From 12 GeV to EIC: EMC-SRC

Axel Schmidt

MIT

June 20, 2018

 $\approx 20\%$ of nucleons are part of correlated pairs.

Knocked-out high-momentum nucleons come with a recoiling partner.

p scattering from Carbon:

- Always a correlated partner
- Anti-parallel momenta

J.L.S. Aclander et al., Phys. Lett. B 453, 211 (1999)A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003)E. Piasetzky et al., PRL 97 162504 (2006)

In carbon, *np*-pairs are strongly preferred.

- E. Piasetzky et al., PRL 97 162504 (2006)
- R. Shneor et al., PRL. 99, 072501 (2007)
- R. Subedi et al., Science 320, 1476 (2008)

Indirect evidence for *np*-dominance in heavier asymmetric nuclei.

O. Hen et al, Science 346, 614 (2014)

SRCs may play an outsized role in big open questions.

Nuclear Matrix Flements

Kortelainen et al. PLB 647 (2007)

SRCs may play an outsized role in big open questions.

- Nuclear Matrix Elements
- Neutrino-Nucleus Interactions

Coloma et al. PRD 89 (2014)

SRCs may play an outsized role in big open questions.

- Nuclear Matrix Elements
- Neutrino-Nucleus Interactions
- Neutron Stars

B.J. Cai, B.A. Li, arXiv 1509.09290 (2016) arXiv:1703.08743 (2017)

The Short-Range Correlations Collaboration

The Short-Range Correlations Collaboration

Massachusetts Institute of Technology

- Prof. Or Hen
- Dr. Shalev Gilad
- Dr. Adi Ashkenazi
- Dr. George Laskaris
- Dr. Maria Patsyuk

- Dr. Axel Schmidt
- Barak Schmookler
- Rey Cruz-Torres
- Afro Papadopoulou
- Efrain Segarra

- Prof. Lawrence Weinstein
- Dr. Florian Hauenstein
- Mariana Khachatryan
- Prof. Eli Piasetzky
- Dr. Igor Korover

- Erez Cohen
- Meytal Duer
- Prof. Will Brooks
- Prof. Hayk Hakobyan
- Iñaki Vega

We study SRCs through several approaches.

- CLAS-6 Data-mining
- Dedicated SRC-pair break-up experiments
- Recoil-tagging measurements .

In my talk today:

- 1 Pair formation and the repulsive NN core
 - We're asking sophisticated quantitative questions of our data.
- 2 *np*-dominance in asymmetric nuclei
 - Neutrons show saturation behavior, protons do not.
- 3 The EMC-SRC connection
 - New data strengthen the case for the SRC hypothesis.

In my talk today:

- Pair formation and the repulsive NN core
 - We're asking sophisticated quantitative questions of our data.
- 2 *np*-dominance in asymmetric nuclei
 - Neutrons show saturation behavior, protons do not.
- The EMC-SRC connection
 - New data strengthen the case for the SRC hypothesis.

CLAS is well-suited for data mining.

- Large acceptance
- Open trigger

The CM momentum distribution of SRC pairs can tell us about pair formation.

Choose kinematics in which FSIs are confined to the pair.

- x > 1.2
- $Q^2 > 1.2 \text{ GeV}^2$

- $\theta_{pq} < 25^{\circ}$
- $ightharpoonup M_{
 m miss} < 1.1~{
 m GeV}$

We see saturation in the CM width.

Erez Cohen et al., under peer review

We see saturation in the CM width.

Erez Cohen et al., under peer review

The ratio of *pp* pairs to single protons can tell us about the *NN*-interaction.

The ratio of *pp* pairs to single protons can tell us about the *NN*-interaction.

How often did we miss a proton we should have seen?

Data-driven likelihood estimate

We use a Markov Chain MC to estimate the acceptance for recoil protons.

We use a Markov Chain MC to estimate the acceptance for recoil protons.

Prelim. results show the expected rise in pp/p.

Much has been learned from very few events.

A new CLAS-12 proposal aims to add order of magnitude more data.

In my talk today:

- 1 Pair formation and the repulsive NN core
 - We're asking sophisticated quantitative questions of our data.

- np-dominance in asymmetric nuclei
 - Neutrons show saturation behavior, protons do not.
- 3 The EMC-SRC connection
 - New data strengthen the case for the SRC hypothesis.

CLAS data mining confirmed the absence of high-momentum *pp* pairs.

O. Hen et al, Science 346, 614 (2014)

Meytal Duer has identified high-momentum neutrons for the first time.

M. Duer, CLAS collaboration, to appear in Nature

Neutrons efficiencies and resolutions were calibrated using the $d(e, e'p\pi^+\pi^-)n$ reaction.

The poor neutron resolution was studied by "smearing" protons.

n/p ratio is constant with asymmetry!

SRC fraction for neutrons saturates.

SRC Fraction
$$\equiv \frac{\sigma_{\text{SRC}}^{A}(e,e'N)}{\sigma_{\text{MF}}^{A}(e,e'N)} / \frac{\sigma_{\text{SRC}}^{C}(e,e'N)}{\sigma_{\text{MF}}^{C}(e,e'N)}$$

SRC fraction for neutrons saturates.

np/pp ratio is constant over all species.

We need experiments to disentangle nuclear size and asymmetry.

- New CLAS-12 proposal
 - Add ⁴⁰Ca. ⁴⁸Ca
- Recent Hall A Tritium Experiment
 - Compare ${}^{3}\text{H} \leftrightarrow {}^{3}\text{He}$
- CaFe (E12-17-005)

In my talk today:

- 1 Pair formation and the repulsive NN core
 - We're asking sophisticated quantitative questions of our data.

- 2 *np*-dominance in asymmetric nuclei
 - Neutrons show saturation behavior, protons do not.
- 3 The EMC-SRC connection
 - New data strengthen the case for the SRC hypothesis.

Could the EMC effect be stemming from heavily modified SRC pairs?

We attempted to extract F_2 for a single np-SRC pair.

We attempted to extract F_2 for a single np-SRC pair.

We attempted to extract F_2 for a single np-SRC pair.

We will test the SRC-EMC hypothesis with recoil-tagging experiments.

Advantages of a deuterium target:

- Minimal final-state interactions
- Spectator has exactly opposite momentum
- 5% of the wave-function is short-range configuration

DEEPS showed little FSI at back angles.

Klimenko et al., PRC 73 035212 (2006)

What we want to measure:

$$\frac{F_2(x',Q^2,\alpha_s)_{\text{bound}}}{F_2(x,Q^2)_{\text{free}}} \approx \frac{\sigma_{\text{DIS}}(x',Q^2,\alpha_s)_{\text{bound}}}{\sigma_{\text{DIS}}(\text{low }x',Q_0^2,\alpha_s)_{\text{bound}}} \times \frac{\sigma_{\text{DIS}}(\text{low }x,Q_0^2)_{\text{free}}}{\sigma_{\text{DIS}}(x,Q^2)_{\text{free}}} \times R_{\text{FSI}}$$

What we want to measure:

$$\frac{F_2(x',Q^2,\alpha_s)_{\text{bound}}}{F_2(x,Q^2)_{\text{free}}} \approx \frac{\sigma_{\text{DIS}}(x',Q^2,\alpha_s)_{\text{bound}}}{\sigma_{\text{DIS}}(\text{low }x',Q_0^2,\alpha_s)_{\text{bound}}} \times \frac{\sigma_{\text{DIS}}(\text{low }x,Q_0^2)_{\text{free}}}{\sigma_{\text{DIS}}(x,Q^2)_{\text{free}}} \times R_{\text{FSI}}$$

Tagged DIS measurement Input ≈ 1

What we want to measure:

$$\frac{F_2(x', Q^2, \alpha_s)_{\text{bound}}}{F_2(x, Q^2)_{\text{free}}} \approx \frac{\sigma_{\text{DIS}}(x', Q^2, \alpha_s)_{\text{bound}}}{\sigma_{\text{DIS}}(\text{low } x', Q_0^2, \alpha_s)_{\text{bound}}} \times \frac{\sigma_{\text{DIS}}(\text{low } x, Q_0^2)_{\text{free}}}{\sigma_{\text{DIS}}(x, Q^2)_{\text{free}}} \times R_{\text{FSI}}$$

Tagged DIS measurement Input ≈ 1

At low x, the EMC effect should be small:

$$\sigma_{\rm DIS}({\rm low}~x',~Q_0^2,\alpha_s)_{\rm bound} \approx \sigma_{\rm DIS}({\rm low}~x,~Q_0^2)_{\rm free}$$

Different models predict different F_2 ratios.

Melnitchouk, Sargsian, Strikman, Z. Phys A 359 p.99 (1997)

BAND will detect recoiling spectator neutrons.

BAND will surround the upstream beamline.

BAND Experiment Details

Experiment

- Experiment E12-11-003A
- Approved for Run Group B
 - Installation in a few weeks!
- Extended LD₂ target
- 11 GeV e— beam
- $10^{35} \text{ cm}^{-2} \text{s}^{-1}$

Backward Angle Neutron Detector

- Finishing module assembly at MIT/ODU
- 5 rows of 21 bars
- 160°-170°
- $\approx 60\%$ azimuthal coverage
- ≈ 40% neutron efficiency

We want reach in both x_B and α_s .

LAD will detect recoiling spectator protons.

LAD is three panels of scintillator bars, originally from the CLAS-6 ToFs.

LAD Experiment Details

Experiment

- Experiment E12-11-107
- Approved for 820 hours
- Extended LD₂ target
- 11 GeV *e* beam
- $10^{36} \text{ cm}^{-2} \text{s}^{-1}$
- Low x and high x settings

Large Acceptance Detector

- 5 panels of 11 bars
- 1.5 sr at back angles
- 90°-160°
- ±18° out-of-plane

Energy deposition in LAD must match velocity.

We plan to add GEMs to assist in vertexing.

We plan to add GEMs to assist in vertexing.

Expected Impact

Expected Impact

Possibilities at the EIC

- Tagging
 - DIS or QE
 - very forward spectator
 - "zero momentum" spectators are now detectable
- 2 Detection of the A-2 system
 - very forward residual nucleus

Small differences in initial momentum become large in the collider frame.

Spectators will be within 2° of beamline.

Pair formation and the NN core

- Pair formation and the NN core
- np-dominance in asymmetric nuclei

- Pair formation and the NN core
- np-dominance in asymmetric nuclei
- SRC-EMC hypothesis

- Pair formation and the NN core
- np-dominance in asymmetric nuclei
- SRC-EMC hypothesis

Conclusions

- New experiments will bring an order of magnitude increase in data.
- We are entering a new *quantitative* era of SRC measurements.