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The GlueX detector in Hall D and the DIRC '

forward calorimeter

barrel time-of

start calorimeter -flight

counter : - DIRC will improve GlueX PID capabilities

(current 11/K separation limited to 2 GeV/c)
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Transportation and installation '

Milestone:

e 6/5/2018 all of the DIRC bar boxes in Hall D
e No issues mechanically and optically

e 2 installed in the lower part
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On average about ~30 photons detected per particle
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Misalignment

e After installation the optical box will be filled by
distilled water (refraction index close to bars).

e Optical box made by several components, system for
calibration.

steel box

e During data-taking this becomes a black-box problem
with many non-differentiable terms.

o relative alignment of the tracking system with
the location and angle of the bars

o mirrors shifts cause parts of the image change
o other offsets

e These aspects make seemingly impossible to
analytically understand the change in PMT pattern

BaBar
bar box
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A complex inverse problem
I=x'dx .

[F60£90x)

o9 =

R0 L o ~

1+3+36+6+8+q 5126 oXY a.,a__ s

2+4+4%3410230 2x429=00 Wi i g =T
2 A 08(8) = b-
sNB= 4T (10F) 4100

b C m cin oA - 4.!'." {'OS(GO)Zg 10000a+100b-

e A grid search with high dimensionality seems less suitable.
B o box e Need of dedicated algorithms for alignment optimization
. using pure samples of pions from Ks
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Hit Patterns

DIRC rings for m* plotted with time on the z-axis.

Credits:
J. Hardin, PhD thesis

3D (x,y,t) readout and this allows to separate spatial
overlaps.

Patterns take up significant fractions of the PMT in
X,y and are read out over 50-100 ns due to
propagation time in bars.

H12700 PMTs have a time resolution of O(200 ps)

and read-out electronics giving time information in 1
ns buckets.

J. Hardin and M. Williams, JINST 11.10 (2016)
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Bayesian Optimization '

POSTERIOR
: MODEL
e BO is a strategy for <

global optimization of hyperparameters

black-box functions. (e.g. maximize Objective Function) ‘ space OBJECTIVE

e After gathering exploration/exploitation
evaluations BO builds
a posterior distribution {
used to construct an new set of offsets
acquisition function.

e This determines what
is next query point.

e BO is agnostic to what Hﬁpaﬂef:s
is optimized. '

- Expected
Select high purity sample of incoming Hit Pattern
charged particles (p,8,9), e.g. T's
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Bayesian Optimization

Posterior
Posterior

Acquisition function

- Acquisition function

BO worked amazingly
well for tuning MC
(llten, Williams, Yang
[1610.08328])).

BO could align the
DIRC detector
leveraging current
reconstruction
algorithms.
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Bayesian Optimization

Toy model
TO mOdel Gaussian Process
e 3 parameters: - v Grid Search

Forest Ext
Forest RF
GBRT

e 3-seg mirror 6x, By, 6z

Each call based on hig_h purity E , | true offsets <Ox, By, Bz>:
sample of (only) 100 pions \ (0.50, 1.0, -0.50) deg

true:
(0.50, 1.0, -0.50) deg

Gr‘i‘d ‘searc»h |

found:
(0.48, 0.9, -0.44) deg

Number of calls n
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Detector Optimization '

BO
e Optimization of detector PO : .' OR <
design is quite complex
problem that can be V perparamete
accomplished with BO = °9. maximize Ohjecive Tuncion) g pace s
' '
trade-off A
e Multi-purpose detector like 2 [ I
EIC requires large-scale : o 2 Kl
simulations of the main geometry, type '
processes to make decision ‘ A = A
e Goal: satisfy detector S > .
) L HEP events Detector observatio
requirements and minimize ' simulation simulation detector respo
cost R&D
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Reconstruction Algorithms and PID :

R. Dzhygadlo et al. Nucl. Instr. And Meth. A, 766:263 (2014)

1. Creation of the LUT: store directions at the end of
the radiator for each hit pixel

©
-§ 2. Direction from the LUT for the hit pixels are
GEJ combined with the track directions (from tracking)
8 g 1.2k
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KDE-based

J. Hardin and M. Williams, JINST 11.10 (2016)
Fast tracing mapping straight lines through a tiled plane

1. Generation - 2. Traces through bars - 3. Traces
through expansion volume

PR
- : n
- N P(X)%ZK(x_si)
- ) l_
. $=40° "

basically a trade-off memory/CPU usage

faster reconstruction/hit pattern

better resolution in regions with high overlap
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Can we use
the same technology

that facebook uses to
recognize faces for
doing particle ID?

slide format suggested by a ML algorithm

14



Any technique Artificial Intelligence
enabling

computers to
mimic human
behaviour
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Artificial Intelligence

A subset of AI Machine Learning
based on

statistical

methods to
enable machines
to improve with

experiences
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Artificial Intelligence

Machine Learning

when applied to

Deep Learning massive datasets
A subset of ML >/ (as particle
which makes the physics

computation of
multi-layer
Neural Network
feasible

experiments) and
giving massive
computer power it
outperforms all
other models
most of the time
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e “Hottest” field in Al, and it's everywhere

Google

use of ML (and DL) in HEP
is becoming ubiquitous

@ #5% ¢

-
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How does it work? I

Forward Propagation e The real magic about NN is the
result of an optimization technique:
back-propagation (how a NN works

Error to improve its output over time)
> Estimation
— e DL (more hidden) nets are good in
learning non-linear functions (heavy
_ :
- h processing tasks)
w,p(X)
> Layer L, e Based on old school NN revitalized
»

by augmented capabilities (e.g.
GPU) and a plethora of new

il architectures (RNN, CNN,
autoencoders, GAN, etc.)

Backward Propagation

e —
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Why does it work? :

VaAVAVAVy

e Debatable and may seem a dark art
(e.g. pruning/dropout neurons,
transfer learning)

Error e No doubts it works...
Estimation

\ /
N— hW,b(X)
Layer L,
Google DeepMind Mnih et al,
1312.5602
Backward Propagation Deep Q-learning
playing Atari Breakout Nature,
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Example PID: NN vs Likelihood Approach :

= T LA S .

e LHCb uses NNs trained on 32 2 ||~ S————tves s b4 48 s i LHCH -
features from all subsystems each g i ’ \ Ipetter
of which is trained to identify a o 0.8 RN
specific particle type = i 3 O

2 0.6 arXiv:1412.6352v2 & R
a0 S & o

e Standard candles are used as T 041 °x ]
calibration samples to characterize ;‘3 T .'. i
performance of NN i G =

02 - AlogL(p-n) ]
. ProbNNp "
O_ 1 TR A |

0 02 04 06 08 1
Signal efficienc

Typically getting ~3x less misID background per particle.
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Deep Learning '

Baldi, Sadowski, Whiteson arXiv:1402.4735
e In particle physics, our goal is

often (if not always) that of o 1 ' ' ' ' ' & i ' ' ' ' '
distinguishing signal from 8. S S ———
5 09 . 9 i)
background. K o i c osl e Vh -
. 5 = %
e We need to build high-level § 07 - § ol L U
features (e:g. |n\{ar|ant masses) f:” asH e T i g, _______ o ol (U058 “\
to accomplish this task. § ail! | 8 04l |
" " | —— NN hidevel (AUC=0.78) N DN lodevel (AUC-058)
e DNN does not need our “help - il .
and can learn from low-level b | ‘
——NNlbdevel (AUC=073) W | | e DN hidevel (AUC=0.80) $
features. 02 . of- .
1 1 1 1 | 1 1 1 1 1
0 0.2 04 0.6 08 1 0 02 04 0.6 0.8 1
Signal efficiency Signal efficiency

The DNN is able to learn all that it needs in this case, as providing high-level features results in no gains.
DNN using low-level features outperforms any selection based only on high-level features.
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Convolutional Neural Network I

e CNN architecture is inspired by human visual cortex. An image can be thought as a group of numbers each describing an
intensity value. This can be input in a NN for classification in output.

———— e Figd
r P e 2 teeth
Find { 1 740N
horizontal ¥ A iy .

Predict age
o tor A
white fur

< coe — ”f : .
<

Find
vertical

Predict weight

N A
CNN “scans the image’ :'tgezj, T T i Q Pregeight
° ° body size
[ J [ (
[ J o ([ J

e The neurons in a CNN look for local examples of translationally invariant features. This is done using convolutional filters to locate
patterns producing maps of simple features, then build complex features using many layers of simple feature maps.
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http://scs.ryerson.ca/~aharley/vis/conv/
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CNNs for neutrinos

e MicroBoone has managed to train CNNs that can locate neutrino interactions within an event (draw bounding

boxes), identify objects and assign pixels to them arXiv 1611.05531

Similar work ongoing at other
v-experiments (see, e.g., NOVA
[1604.01444]), and also at colliders
in the area of jet physics
[1511.05190], [1603.09349], ...)

time

LN

Nu: 0.926

wire number

[image from T. Wongjirad]

DNN at NOVA led to an impressive improvement for v_-detection
(equivalent to ~ 30% more in exposure than previous PID techniques: $$9$)
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Generative Adversarial Network I

arXiv:1406.2661

Data sample

is data sample?

R/F

from hoise
to an event

sample

Fast Simulations

Detailed simulation of detector response is provided by
amazing tools like Geant, which is slow and often
prohibitive for generating large enough samples.

Cutting-edge application of deep learning uses GAN for
fast simulation.

2-NN game, one model maps noise to images, the other
classifies the images if real or fake.

The goal is to confuse the discriminator.

CALOGAN: Paganini, de Oliveira, Nachman 1705.02355
jet images production: 1701.05927

CALOGAN can generate the reconstructed CALO image using random noise, skipping the GEANT and RECO steps
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https://arxiv.org/abs/1406.2661

Generative Adversarial Network I

arXiv:1406.2661

Fast Simulations

e Detailed simulation of detector response is provided by

INPUTS
'.@
1
+

o amazing tools like Geant, which is slow and often
“L_l % prohibitive for generating large enough samples.
|
e Cutting-edge application of deep learning uses GAN for
fast simulation.
e
e 2-NN game, one model maps noise to images, the other
OUTPUTS . . .
e classifies the images if real or fake.

23
<

e The goalis to confuse the discriminator.

-  CALOGAN: Paganini, de Oliveira, Nachman 1705.02355
- jetimages production: 1701.05927

. \\ >e7? \fj

CALOGAN can generate the reconstructed CALO image using random noise, skipping the GEANT and RECO steps
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https://arxiv.org/abs/1406.2661

Deliverables and timeline

e DIRC alignment with BO. ~ %2 year

e Explore deep nets architectures for GlueX DIRC/PID;
determination of best approaches enhanced by BO hyperparameter
tuning (on a longer term ~ 1 year).

e Collaboration: MIT/DIRC group.

e Resources: deep learning workstation.

JLAB User Group Workshop and Annual Meeting - June 2018
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Summary '

e Use of ML became ubiquitous in particle physics. Deep Learning is starting to make an impact.

e Alot of exciting cutting-edge work not discussed, e.g., DKF, DNNs on FPGAs, automatic anomaly
detection, compression using autoencoders, etc.

e Systematics are vital in our field: we are developing systematics aware ML algorithms and we are
characterizing “black boxes” (e.g. DIRC optical box, EIC detector design).

e Beyond the issue of systematics, our data have other interesting features from a CS perspective:
sparse data, irregularities in detector geometries, heterogeneous information, physical symmetries
and conservation laws (e.g. recursive NN), etc.

We just began to scratch the surface when it comes to using tools like BO and DL
and recent achievements in our field (e.g. NOVA, LHCDb, ...) suggest it's worth exploring these strategies.
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BACKUP
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Deep jet tagging |'|i!_
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e Ajetin LHC is a spray of
hadrons from shower
initiated by some
fundamental particle

e Define set of features with
distributions depending on
the jet nature

e Train NN using a sample
of jets whose nature is
known




Deep jet tagging

e DNN based on high-level features (jet
masses, multiplicities, energy = oier ACE S

correlation functions, etc.) q tagger, AUC = 90.4%
—— w tagger, AUC = 94.6%

A@ T “{)‘ T T
s —bquark S ool ] —— ztagger, AUC = 93.9%
w 10F — c-quark i) — %
k] — Light Flavor S 6008 55 —— ttagger, AUC = 95.8%
S S Q 1p-1
g g 0.02) B g
w00 5. =
Guest et gl arXpe E
104k e 0.01 ©
c
igel B 0.005 8
— a 1
‘ ‘ m |' ILIngIav S
0 50 100 150 200 250 300 B 2 -1 0 1 2 P4
Jetp [GeV] Jet Pseudorapidity &8 10-2
m
I 16 inputs
64 nodes

activation: ReLU

3R nodes

activation: ReLU ‘ y 0.4 0.6
8 Signal Efficienc

3R nodes 9 y

activation: ReLU

ﬂ .
5 outputs J. Duarte et al arXiv:1804.06913v2
activation: SoftMax

JLAB User Group Workshop and Annual Meeting - June 2018 32 |



Intuitively understanding CNN Rl
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Other Architectures: Recurrent & Recursive NN

Recursive Neural Network

Recurrent Neural Network Parsing Natural Scene Images
_
—— Semantic
A % } L3 |F:{Ltiegtrszrseesntations
—> A ‘ L %7 | Segments
Parsing Natural Language Sentences
S
/%vp A smeIJII crowd
quietly enters
; L1y L @Iggg the historic
A small quietly / NP ghurch
crowd enters Det,”  Adj. N.  Semantic
Representations
. OutpUt Layer the J historic Lhurch miurc;ss
Hidden Layer

e Example: jet physics.
e More efficient than image-based networks.

G. Louppe, K. Cho, C. Becot, and K. Cranmer 1702.00748v1
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Other Architectures:

Recurrent & Recursive NN ' |

Recurrent Neural Network

Output Layer
Hidden Layer

Recursive Neural Network

3.8 *®
5.8 °Q
Y °e
% oo
" °®
199 °0
16,49,8 'Y
':::::. o0 ‘ .
A% 2° 'Y

Figure 2. Typical tree structures for 1 TeV gluon jet (left) and quark jet(right).

T. Cheng [1711.02633v1]
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Frameworks '

Deep learning libraries:
Accumulated GitHub metrics

DL4J

Deeplearning4j

Aggregate popularity (30econtrib + 10<issues + 5¢forks)ele-3
tensorflow/tensorflow

BVLC/caffe
fchollet/keras
dmlc/mxnet
Theano/Theano
: ’ deeplearning4j/deeplearning4j
NﬁHC0nvth| : A Microsoft/CNTK

torch/torch7
baidu/paddle
pfnet/chainer
NVIDIA/DIGITS
tflearn/tflearn
pytorch/pytorch
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Geometrical Reconstruction I

. See R. Dzhygadlo et al. Nucl. Instr. And Meth. A, 766:263, 2014
BABAR-like

Has two stages:

1. Creation of the look-up table (LUT): store directions 2. Directions from the LUT for the hit pixels are combined
at the end of the radiator for each hit pixel with the track direction (from the tracking system)
A
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Geometrical Reconstruction I

Kaons and pions with p = 4 GeV/c, theta = 11°, phi = 90°

Log likelihood is based on the Cherenkov angle and the number of detected photons
Timing information is used to cut out some solutions

Reconstructed Cherenk9v angle Separation between kaonssand pions =4.95s. d.
cherenkov angle sep =4.95s.d.
g 12 g 60—
§ F 6,=08239rad @
2 ¢ ef=08175rad 2 A
2 o8 o7 =8.1mrad ® ok
& [ of=84mrad - .
06— 30— kaons pions
C kaons -
04 20—
0.2:— 105_
- | 1 E,. |,,|,,..( A s a2 a3 L S~ RE a1 g 4y
%7 0.75 0.8 9650 50 100 ) 0 50 100 150 200
In L(r) - In L(K)
2
2 2 o) : ;
c.=0, +F Design goal: >= 3 s.d. between pions and kaons for momenta up to 4 GeV/c
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Time-based imaging

Calculate log likelihoods for each particle hypothesis directly from the time spectrum in each hit pixel

In advance need time spectra for each particle type and the given track configuration (momentum, direction)

Such time spectra can be simulated or calculated analytically

kaons 2 GeV/c, 8=1.2°, ¢=90°

et
e e

RN

e

i

R (R

oions 2 GeV/c, 8=1.2°, =90°

2 Pion
" Kaon
=
- Pion
b:'—
Kaon

L@ @ ® b @ b

At
0

i

il
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Time-based imaging :

separation = 5.40

¥ ol kaons —pions

4 GeV/c pions and kaons, theta = 1.2°, phi = 90° : |
400{—
N Vi t)+ BVt 300{—
logc,, = Z log(sh(xl Vi tl)l\j‘ (X, Yi tl)) +logPN(Ne) _
= e B
= 200(—
100—

80

-60 -40 -20 0 20 40 60
In L(p) - In L(x)

|
@
(=]

Right now we simulate PDFs
Belle Il TOP uses analytical PDFs, and we plan to try this method
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FastDIRC - KDE based Reconstruction I

* Use Kernel Density
Estimation to compare
particle hypothesis
patterns

* Use fast tracing to

implement KDE

* O(1) speed vs O(100)
bounces

* Compare Log Likelihoods

P(x) =~ ZK(ZE — ;)

/
iz //
A
|
//
/17 R\ .
. G I
a3 d)=40° 50

1500 7000 500 0 500 1000 1500

See the FastDIRC paper (J Hardin, M Williams 1608.01180)
Github: https://github.com/jmhardin/FastDIRC
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FastDIRC - KDE based Reconstruction

FastDIRC Fraction Worse = (LUTres - FastDIRCres)/LUTres

o
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©
o
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