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Introduction GPDs TMDs Wigner fcts Summary

Parton imaging: why? what? how? where?

scope of this talk

I overarching physics motivation
concrete examples of physics accessible with parton imaging

I explain some underlying physical principles

I some comments on theory status

I some comments on specific issues at JLab@12 GeV and at EIC

I not a comprehensive overview

more information in later talks at this meeting
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Physics questions

I outstanding question in QCD: relation between

q, q̄, g in LQCD

current quarks, mu,d � 100 MeV
manifest at small distances
hadrons seen at high resolution

constituent quarks
effective masses m ∼ 300 MeV
spectroscopy, quark models
“p = uud, n = ddu, . . .”

I simplest idea: at low resolution p = uud
gluons and sea quarks from perturbative parton splitting

Parisi, Petronzio ’76, Novikov et al ’77; Glück, Reya ’77

is incompatible with measured parton densities
Glück, Reya, Vogt ’90 ff.; MD talk at POETIC 2018

I other scenarios

• proton = quarks and antiquarks, gluons from evolution
have q̄ e.g. from meson cloud Thomas ’83

or in quark-soliton model Diakokov et al ’86

• proton = UUD with “composite valence quarks” U,D containing
antiquarks and gluons Altarelli et al ’74
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Introduction GPDs TMDs Wigner fcts Summary

Physics questions

I outstanding question in QCD: relation between

q, q̄, g in LQCD

current quarks, mu,d � 100 MeV
manifest at small distances
hadrons seen at high resolution

constituent quarks
effective masses m ∼ 300 MeV
spectroscopy, quark models
“p = uud, n = ddu, . . .”

I general idea:
seek qualitatively new and quantitatively precise information on q, q̄, g in
hadrons at high resolution

I several lines of study:

• partons in “valence region” x ∼ 1/3
• partons at large x � 1/3  JLab@12 GeV
• sea quarks and gluons  EIC
• spin and orbital angular momentum of partons
• distribution of partons in three dimensions  imaging
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Imaging: longitudinal vs. transverse directions

I hard processes single out (at least) one spatial direction

vs.

holds both in collision c.m. and in target rest frame

I different roles played by longitud. and transv. directions
 lose manifest 3dim rotation symmetry in target rest frame

I usual parton densities: longitudinal information
aims: achieve high precision, details of flavor structure,

q vs. q̄, polarisation, nuclear effects

I transverse structure: much less well known
in first instance aim to see general trends/patterns
but may require high-precision to expose subtle effects

I new d.o.f.: orbital angular momentum (classically: ~L = ~r × ~p)
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Imaging basics: transverse momentum and transverse position

I variables related by 2d Fourier transforms, e.g. for
quark field operator (in QFT) or wave function (in QM)

φ(k) =
∫
d2z eizkψ(z)

display only transverse variables (boldface), omit longitudinal ones

I fully relativistic: can localise only in 2 dimensions Soper ’72; Burkardt ’02

in 3d can only localise object within its Compton wavelength

I at level of squared amplitudes/probabilities/density matrices have

φ(k)φ(l) =
∫
d2y d2z e−i(yk−zl) ψ(y)ψ(z)

yk − zl = 1
2
(y + z)(k − l) + 1

2
(y − z)(k + l)

’average’ transv. momentum ↔ position difference

transv. momentum transfer ↔ ’average’ position

I ’average’ transv. mom. and position not Fourier conjugate
nor are parton distributions in transv. mom. or in impact parameter

I integrate over all transv. mom.  all fields at transv. position zero
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Imaging basics: transverse momentum and transverse position

I variables related by 2d Fourier transforms, e.g. for
quark field operator (in QFT) or wave function (in QM)

φ(k) =
∫
d2z eizkψ(z)

display only transverse variables (boldface), omit longitudinal ones

I fully relativistic: can localise only in 2 dimensions Soper ’72; Burkardt ’02

in 3d can only localise object within its Compton wavelength

I at level of squared amplitudes/probabilities/density matrices have

φ(k)φ(l) =
∫
d2y d2z e−i(yk−zl) ψ(y)ψ(z)

yk − zl = 1
2
(y + z)(k − l) + 1

2
(y − z)(k + l)

’average’ transv. momentum ↔ position difference

transv. momentum transfer ↔ ’average’ position

I full information: Wigner phase space distributions W (x,k, b)

give probabilities
∫
d2kW = f(x, b) and

∫
d2bW = f(x,k)

in context of parton distributions: Belitsky, Ji, Yuan ’03
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Factorisation: exclusive or inclusive

I separate dynamics into “hard probe” and “structure of target”
nontrivial, requires hard scale Q2, comes with corrections ∼ (Λ/Q)k

I exclusive processes: nucleon in final state, longitudinal and transverse
momentum transfer  transverse position of struck parton
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Introduction GPDs TMDs Wigner fcts Summary

Factorisation: exclusive or inclusive

I separate dynamics into “hard probe” and “structure of target”
nontrivial, requires hard scale Q2, comes with corrections ∼ (Λ/Q)k

I inclusive processes: parton distribution in squared amplitude,
no mom. transfer on hadron, but can have transv. parton momentum
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Longitudinal momentum: moments and sum rules

I longitudinal parton mom. fraction ↔
FT

z− = 1√
2

(z0 − z3) ∼ long. position in frame where hadron moves fast

I parton distributions defined via

f(x) ∼
∫
dz− eixp

+z− ψ̄
(
− 1

2
z−
)
. . . ψ

(
1
2
z−
)

display only longitudinal variables (boldface), omit transverse ones

I in moments
∫
dx xn−1 f(x)

Fourier exponential eixp
+z− turns into δ(z−) or its derivatives

 local operators

I lowest moments:

• n = 1, unpolarised quarks  vector current
long. pol. quarks  axial vector current

• n = 2, unpolarised quarks or gluons  energy-momentum tensor

 momentum, angular momentum (Ji’s sum rule ’96)

pressure and shear forces Polyakov ’03, talk by F X Girod

note: gravitons couple directly to energy-momentum tensor,
but cannot tell a quark from a gluon
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I graph for unpolarised partons, with polarisation even more structure

I subtleties of resolution scale dependence are understood, not shown here
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I several of these functions can be computed in lattice QCD
→ talk by M Constantinou
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Exclusive processes and GPDs: transverse position

I DVCS and meson production  generalised parton distrib’s

γ γ∗
γ∗ γ

x−ξx+ξ

γ∗ γ∗

M =ρ, φ, π, ... M =ρ, φ, ...

I similar theory as for usual parton densities
have factorisation proofs, evolution in resolution scale Q

I longit. mom. transfer  two parton mom. fractions x± ξ
• at LO in αs measure GPD(x, ξ = x,∆)
• in general x “smeared” around ξ

I separate dep’ce on x and ξ from scaling violations in Q2

• need largest possible Q2 range

I imaging: measure ∆ and Fourier transform to b
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Exclusive processes and GPDs: transverse position

I DVCS and meson production  generalised parton distrib’s

γ γ∗
γ∗ γ

x−ξx+ξ

γ∗ γ∗

M =ρ, φ, π, ... M =ρ, φ, ...

I ’1st stage’ imaging: amplitude→
FT

GPD(x, ξ = x, b)

x x′ = 0

b

no probability interpretation, but b = well defined transverse distance
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Exclusive processes and GPDs: transverse position

I DVCS and meson production  generalised parton distrib’s

γ γ∗
γ∗ γ

x−ξx+ξ

γ∗ γ∗

M =ρ, φ, π, ... M =ρ, φ, ...

I ’2nd stage’: GPD(x, ξ = x, b)→ GPD(x, ξ = 0, b)
x

b

x

• density interpretation: GPD(x, ξ = 0, b) = f(x, b)
• access only via αs effects  Q2 dependence
• extrapolation to ξ = 0 depends on theoretical assumptions
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Correlations between x and b

I lattice calculations (moments
∫
dxxnf(x, bT ) with n = 0, 1, 2) find

significant correlation between bT and x
average x in moments ∼ 0.2 to 0.4  size of “valence” configurations

direct measurement in scattering experiments?  JLab@12 GeV

I at large b prediction from chiral dynamics Strikman, Weiss ’09

f(x, b) ∼ e−κb/b with κ ∼ 2mπ = (0.7 fm)−1

sets in for x<∼mπ/mp

requires precise measurement at low ∆
first glimpse from COMPASS DVCS
full potential at EIC

p

virtual π
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Correlations between x and b
I at small x< 0.01 find 〈b2〉 ∝ const + α′ log 1

x
Gribov diffusion

• for gluons α′ ∼ 0.15 GeV−2 from HERA J/Ψ prod’n
much smaller than in soft hadronic procs.

• for valence quarks (q − q̄)
get α′ ∼ 0.9 GeV−2 in GPD models fitted to e.m. form factors

MD et al ’04; Guidal et al ’04; MD, Kroll ’13

in line with meson Regge trajectories
direct measurement in scattering experiments?

• value for sea quarks? cross talk with gluons?
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Spin and orbital angular momentum

I GPD E ↔ nucleon helicity flip 〈↓ |O|↑〉 E

 interference between wave fcts. with Lz and Lz ± 1

no direct relation with 〈Lz〉, but indicator of large Lz

I helicity flip ↔ transverse polarisation asymmetry
parton dist’s in proton polarised along x are shifted along y:

f⇑(x, b) = f(x, b2)− by

m
∂
∂b2

e(x, b2)

e(x, b2) = Fourier transform of E(x, ξ = 0,∆T )

I connection to orbital angular momentum via ~b× ~p
I shift known to be large for valence combinations u− ū, d− d̄

from sum rule connecting with magnetic moments of p and n
unknown for sea quarks and gluons

Burkardt ’02, ’05; Burkardt and Schnell ’05

I E key part of Ji’s angular momentum sum rule

2Jq =
∫
dxx[q(x) + q̄(x)] +

∫
dxx[eq(x) + eq̄(x)]

and its analogue for gluons
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Exclusive processes → talk by C Hyde

I Compton scattering: deeply virtual (DVCS) or timelike (TCS)

ep→ epγ or γp→ `+`−p

• best theory control: NNLO, twist three, corr’s in m2/Q2 and t/Q2

Müller et al., Braun and Manashov

• interference with Bethe-Heitler process (calculable)
→ phase of Compton amplitude

γ*

pp

γ

p p

γ

p p’

γ

I meson production

γ∗ γ∗

M =ρ, φ, π, ... M =ρ, φ, ...

• many channels, separation of quark flavors and gluons
• theory more involved: meson wave fct.

NLO and 1/Q corrections can be large
• strong indications that need Q2 >∼ several 10 GeV2 to reach

factorisation regime
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JLab@12 GeV and EIC

I different x ranges  different configurations in nucleon

I special opportunity at 12 GeV: very rare processes

double DVCS

• γ∗p→ γ∗p measured in ep→ e+ µ+µ− + p
• two independent photon virtualities
 more detailed access to longitudinal kinematics
 disentangle x and ξ in GPDs

I special opportunities at EIC

• high Q2  greater lever arm for scale evolution,
cleaner theory for meson production

• production of J/Ψ and Υ  selects gluons in target
diminished thy. uncertainty from meson wave function

rate estimates cf. e.g. talk by S Joosten at QCD Evolution 2018

at 12 GeV J/Ψ prod’n close to threshold  dynamics not described by GPDs

I special opportunity wherever can be realised: positron beam
DVCS beam charge asymmetry  clean access to Compton amplitude
via interference with Bethe-Heitler
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Transverse momentum dependent distributions → talk by H Gao

I theoretical description of transv. momenta in final state:

• for small transv. momenta (or transv. momentum differences)
described by transv. mom. dependent distributions etc.

• if large then generate perturbatively = hard radiation
• graphs for SIDIS ep→ eh+X:

γ

P

D(z,k  )T

f(x,p  )T

*
h

f(x)

D(z)

analogous for Drell-Yan process pp→ `+`− +X

I no sharp boundary between “intrinsic” and “radiative” regimes
but transition between the two interesting and practically relevant
basic theory well understood, open questions remain

cf. e.g. Bacchetta et al ’08; Collins et al ’16; Gamberg et al ’17

I radiative corrections known at NLO, in parts also NNLO
partial understanding of 1/Q corrections

cf. e.g. talk by A Vladimirov at QCD Evolution 2018
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The importance of gluons “accompanying” a parton

SIDIS

Drell-Yan

I in general, coloured objects are surrounded by gluons
profound consequence of gauge invariance
technically implemented in Wilson lines

I kT dep’t distributions can be time reversal odd
e.g. Sivers function: unpol. quarks in proton pol. along x axis:

fX(x,kT ) = f(x, k2
T ) + ky

M
f⊥1T (x, k2

T )

Sivers fct. has opposite sign when gluons couple after quark scatters
(SIDIS) or before quark annihilates (DY)
would be zero if gluons were absent
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The importance of gluons “accompanying” a parton

SIDIS

Drell-Yan

I in general, coloured objects are surrounded by gluons
profound consequence of gauge invariance
technically implemented in Wilson lines

I kT dep’t distributions can be time reversal odd
e.g. Sivers function: unpol. quarks in proton pol. along x axis:

fX(x,kT ) = f(x, k2
T ) + ky

M
f⊥1T (x, k2

T )

Sivers fct. has opposite sign when gluons couple after quark scatters
(SIDIS) or before quark annihilates (DY)
would be zero if gluons were absent

I fragment’n fct’s: similar dynamics, with important differences
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Orbital angular momentum again

f⊥
1T

I Sivers fct. ↔ proton helicity flip

 interference of config’s with Lz and L′z = Lz ± 1

another indicator of Lz
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Orbital angular momentum again

a) b)

figure: M Burkardt

I chromodynamic lensing:
transverse shift in b space (described by E)
 transverse shift in kT (described by f⊥1T )

• generated by gluon exchange, opposite signs for SIDIS and DY
• no calculation in full QCD (is highly nonperturbative)

but seen in model calculations

should test experimentally for different x and different parton species

I both E and f⊥1T exist for quarks and gluons
could become sizeable at small x by parton splitting,
provided that are not small at low scale/low kT

M. Diehl From 12 GeV to EIC: Imaging 25



Introduction GPDs TMDs Wigner fcts Summary

JLab@12 GeV and EIC

I different x ranges  different configurations in nucleon

I challenge at 12 GeV: factorisation for SIDIS ep→ eh+X requires

large invariant hadronic mass: mX � resonance masses

γ

P

D(z,k  )T

f(x,p  )T

*
h

m2
X = Q2 xB

1− xB
(1− z)− 1

z
P 2
h⊥

+hadron mass terms

detailed analysis: Boglione et al ’17

I at EIC: several benefits from larger phase space:

• larger Q2  higher theory precision
can study scale evolution

• large range of hadron transv. mom. Ph⊥
 study transition between “intrinsic” and “radiative” regimes
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Wigner functions

I relatively young field, many aspects remain to be worked out

I theory tool to relate GPDs and TMDs, exhibit unifying aspects

work by Metz et al; Hatta et al; Lorcé and Pasquini; Rajan et al

I direct measurement possible? proposal:

exclusive electroproduction of dijets ep→ e+ jet 1 + jet 2 + p

Hatta, Xiao, Yuan ’16

• access to generalised TMDs (x, q, ξ,∆)

• open questions regarding theory
quite sure that need γ∗, not photoproduction

and experimental realisation

• requires EIC at high energy plot: Y Hatta at POETIC 2018

also discussed in small-x framework Altinoluk et al ’15; Boussarie et al ’16

and in collinear factorisation (GPDs) Braun, Ivanov ’05
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Summary

I exclusive and semi-inclusive procs. with measured transv. momenta

 study trv. parton position and momentum in quantitative,
theoretically controlled ways

I relates to deep concepts and questions in QCD
some concrete, others more generic

• interplay of pert. and nonpert. phenomena
− radiatively generated vs. nonpert. sea, flavour and spin strct.
− transition from small to large kT

• spatial distribution of partons in hadron ↔ confinement
• role of π fluctuations ↔ chiral dynamics
• spin-orbit correlations (kT or bT vs. polarisation)
 orbital angular momentum

• dynamics of gluons that accompany any coloured particle
 gauge symmetry, Wilson lines

I have common theory framework to interpret meas’ts at 12 GeV and at EIC
pointed out specific differences, but see coherent science programme for
the two facilities
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