From 12 GeV to EIC: Imaging

M. Diehl

Deutsches Elektronen-Synchroton DESY

JLab Users Group Meeting , 18 June 2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Parton imaging: why? what? how? where?

scope of this talk

- overarching physics motivation concrete examples of physics accessible with parton imaging
- explain some underlying physical principles
- some comments on theory status
- some comments on specific issues at JLab@12 GeV and at EIC
- not a comprehensive overview

more information in later talks at this meeting

Introduction	GPDs	TMDs	Wigner fcts	Summary
•00000	00000	0000	0	0

Physics questions

outstanding question in QCD: relation between

 $\begin{array}{ll} q, \bar{q}, g \text{ in } \mathcal{L}_{\mathsf{QCD}} & \text{constituent quarks} \\ \text{current quarks, } m_{u,d} \ll 100 \, \mathrm{MeV} & \text{effective masses } m \sim 300 \, \mathrm{MeV} \\ \text{manifest at small distances} & \text{spectroscopy, quark models} \\ \text{hadrons seen at high resolution} & "p = uud, n = ddu, \dots" \end{array}$

 simplest idea: at low resolution p = uud gluons and sea quarks from perturbative parton splitting Parisi, Petronzio '76, Novikov et al '77; Glück, Reya '77 is incompatible with measured parton densities Glück, Reva, Vogt '90 ff.; MD talk at POETIC 2018

other scenarios

- proton = quarks and antiquarks, gluons from evolution have \bar{q} e.g. from meson cloud Thomas '83 or in quark-soliton model Diakokov et al '86
- proton = UUD with "composite valence quarks" U, D containing antiquarks and gluons Altarelli et al '74

Introduction	GPDs	TMDs	Wigner fcts	Summary
•00000	00000	0000	0	0

Physics questions

outstanding question in QCD: relation between

 q, \bar{q}, q in \mathcal{L}_{QCD} current quarks, $m_{u,d} \ll 100 \,\mathrm{MeV}$ effective masses $m \sim 300 \,\mathrm{MeV}$ manifest at small distances hadrons seen at high resolution "p = uud, n = ddu, ..."

constituent quarks spectroscopy, quark models

general idea:

seek qualitatively new and quantitatively precise information on q, \bar{q}, q in hadrons at high resolution

several lines of study:

- partons in "valence region" $x \sim 1/3$
- partons at large $x \gg 1/3 \rightsquigarrow JLab@12 \text{ GeV}$
- sea guarks and gluons → EIC
- · spin and orbital angular momentum of partons
- distribution of partons in three dimensions ~> imaging

Introduction	GPDs	TMDs	Wigner fcts	Summary
00000	00000	0000	0	0

Imaging: longitudinal vs. transverse directions

hard processes single out (at least) one spatial direction

holds both in collision c.m. and in target rest frame

- different roles played by longitud. and transv. directions
 lose manifest 3dim rotation symmetry in target rest frame
- usual parton densities: longitudinal information aims: achieve high precision, details of flavor structure, q vs. q
 , polarisation, nuclear effects
- transverse structure: much less well known in first instance aim to see general trends/patterns but may require high-precision to expose subtle effects
- new d.o.f.: orbital angular momentum (classically: $\vec{L} = \vec{r} \times \vec{p}$)

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Imaging basics: transverse momentum and transverse position

 variables related by 2d Fourier transforms, e.g. for quark field operator (in QFT) or wave function (in QM)

$$\phi(\mathbf{k}) = \int d^2 \mathbf{z} \ e^{i\mathbf{z}\mathbf{k}} \psi(\mathbf{z})$$

display only transverse variables (boldface), omit longitudinal ones

- fully relativistic: can localise only in 2 dimensions in 3d can only localise object within its Compton wavelength
- at level of squared amplitudes/probabilities/density matrices have

$$\begin{split} \overline{\phi}(\boldsymbol{k}) \, \phi(\boldsymbol{l}) &= \int d^2 \boldsymbol{y} \, d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{y}\boldsymbol{k}-\boldsymbol{z}\boldsymbol{l})} \, \overline{\psi}(\boldsymbol{y}) \, \psi(\boldsymbol{z}) \\ \boldsymbol{y} \boldsymbol{k} - \boldsymbol{z} \boldsymbol{l} &= \frac{1}{2} (\boldsymbol{y} + \boldsymbol{z}) (\boldsymbol{k} - \boldsymbol{l}) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{z}) (\boldsymbol{k} + \boldsymbol{l}) \end{split}$$

'average' transv. momentum \leftrightarrow position difference transv. momentum transfer \leftrightarrow 'average' position

- 'average' transv. mom. and position not Fourier conjugate nor are parton distributions in transv. mom. or in impact parameter
- ▶ integrate over all transv. mom. ~> all fields at transv. position zero

Introduction	GPDs	TMDs	Wigner fcts	Summary
00000	00000	0000	0	0

Imaging basics: transverse momentum and transverse position

 variables related by 2d Fourier transforms, e.g. for quark field operator (in QFT) or wave function (in QM)

$$\phi(\boldsymbol{k}) = \int d^2 \boldsymbol{z} \; e^{i \boldsymbol{z} \boldsymbol{k}} \psi(\boldsymbol{z})$$

display only transverse variables (boldface), omit longitudinal ones

fully relativistic: can localise only in 2 dimensions Soper '72; Burkardt '02 in 3d can only localise object within its Compton wavelength

at level of squared amplitudes/probabilities/density matrices have

$$\begin{split} \overline{\phi}(\boldsymbol{k}) \, \phi(\boldsymbol{l}) &= \int d^2 \boldsymbol{y} \, d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{y}\boldsymbol{k}-\boldsymbol{z}\boldsymbol{l})} \, \overline{\psi}(\boldsymbol{y}) \, \psi(\boldsymbol{z}) \\ \boldsymbol{y} \boldsymbol{k} - \boldsymbol{z} \boldsymbol{l} &= \frac{1}{2} (\boldsymbol{y} + \boldsymbol{z}) (\boldsymbol{k} - \boldsymbol{l}) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{z}) (\boldsymbol{k} + \boldsymbol{l}) \end{split}$$

'average' transv. momentum \leftrightarrow position difference transv. momentum transfer \leftrightarrow 'average' position

▶ full information: Wigner phase space distributions $W(x, \mathbf{k}, \mathbf{b})$ give probabilities $\int d^2 \mathbf{k} W = f(x, \mathbf{b})$ and $\int d^2 \mathbf{b} W = f(x, \mathbf{k})$

in context of parton distributions: Belitsky, Ji, Yuan '03

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Factorisation: exclusive or inclusive

- separate dynamics into "hard probe" and "structure of target" nontrivial, requires hard scale Q², comes with corrections ~ (Λ/Q)^k
- ► exclusive processes: nucleon in final state, longitudinal and transverse momentum transfer ~→ transverse position of struck parton
 - PDF factorization
 - ★ inclusive processes
 - ★ p_T ~ hardest scale or unmeasured

- TMD factorization
 - 🛨 inclusive
 - ★ p_T « hardest scale

- GPD factorization
 - ★ exclusive processes
 - 🖈 non-forward kinematics

- small-x factorization
 - ★ inclusive or exclusive
 - ★ unintegrated gluon dist's

From 12 GeV to EIC: Imaging

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Factorisation: exclusive or inclusive

- separate dynamics into "hard probe" and "structure of target" nontrivial, requires hard scale Q², comes with corrections ~ (Λ/Q)^k
- inclusive processes: parton distribution in squared amplitude, no mom. transfer on hadron, but can have transv. parton momentum
 - PDF factorization
 - ★ inclusive processes
 - ★ p_T ~ hardest scale or unmeasured

- TMD factorization
 - 🛨 inclusive
 - ★ p_T « hardest scale

- GPD factorization
 - ★ exclusive processes
 - 🖈 non-forward kinematics

- small-x factorization
 - ★ inclusive or exclusive
 - ★ unintegrated gluon dist's

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Longitudinal momentum: moments and sum rules

Iongitudinal parton mom. fraction \leftrightarrow

 $z^{-}=rac{1}{\sqrt{2}}\left(z^{0}-z^{3}
ight)~\sim$ long. position in frame where hadron moves fast

parton distributions defined via

$$f(x) \sim \int dz^- e^{ixp^+z^-} \bar{\psi}\left(-\frac{1}{2}z^-\right) \dots \psi\left(\frac{1}{2}z^-\right)$$

display only longitudinal variables (boldface), omit transverse ones

Iowest moments:

- n = 1, unpolarised quarks → vector current long. pol. quarks → axial vector current
- n = 2, unpolarised quarks or gluons \rightsquigarrow energy-momentum tensor
 - → momentum, angular momentum (Ji's sum rule '96) pressure and shear forces Polyakov '03, talk by F X Girod

note: gravitons couple directly to energy-momentum tensor, but cannot tell a quark from a gluon

Introduction	GPDs	TMDs	Wigner fcts	Summary
00000	00000	0000	0	0

Parton correlation functions and their descendants

- graph for unpolarised partons, with polarisation even more structure
- subtleties of resolution scale dependence are understood, not shown here

Introduction	GPDs	TMDs	Wigner fcts	Summary
00000	00000	0000	0	0

Parton correlation functions and their descendants

▶ several of these functions can be computed in lattice QCD \rightarrow talk by M Constantinou

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	•0000	0000	0	0

Exclusive processes and GPDs: transverse position

▶ DVCS and meson production ~→ generalised parton distrib's

similar theory as for usual parton densities have factorisation proofs, evolution in resolution scale Q

longit. mom. transfer \rightsquigarrow two parton mom. fractions $x \pm \xi$

- at LO in α_s measure ${\sf GPD}(x,\xi=x,{\bf \Delta})$
- in general x "smeared" around ξ
- separate dep'ce on x and ξ from scaling violations in Q^2
 - need largest possible Q^2 range
- ▶ imaging: measure △ and Fourier transform to b

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	●0000	0000	0	0

Exclusive processes and GPDs: transverse position

▶ DVCS and meson production ~→ generalised parton distrib's

▶ '1st stage' imaging: amplitude $\rightarrow_{\text{FT}} \text{GPD}(x, \xi = x, b)$

$$x \qquad x' = 0$$

no probability interpretation, but $\boldsymbol{b} =$ well defined transverse distance

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	●0000	0000	0	0

Exclusive processes and GPDs: transverse position

▶ DVCS and meson production ~→ generalised parton distrib's

► '2nd stage': $GPD(x, \xi = x, b) \rightarrow GPD(x, \xi = 0, b)$

- density interpretation: $GPD(x, \xi = 0, b) = f(x, b)$
- access only via $lpha_s$ effects $\rightsquigarrow Q^2$ dependence
- extrapolation to $\xi = 0$ depends on theoretical assumptions

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	0000	0000	0	0

Correlations between x and b

Introduction lattice calculations (moments ∫ dx xⁿ f(x, b_T) with n = 0, 1, 2) find significant correlation between b_T and x average x in moments ~ 0.2 to 0.4 ↔ size of "valence" configurations

direct measurement in scattering experiments? ~> JLab@12 GeV

• at large b prediction from chiral dynamics $f(x,b) \sim e^{-\kappa b}/b$ with $\kappa \sim 2m_{\pi} = (0.7 \,\text{fm})^{-1}$

Strikman, Weiss '09

sets in for $x \leq m_{\pi}/m_p$ requires precise measurement at low Δ first glimpse from COMPASS DVCS full potential at EIC

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Correlations between x and b

• at small x < 0.01 find $\langle b^2 \rangle \propto \text{const} + \alpha' \log \frac{1}{x}$

• for gluons $lpha'\sim 0.15\,{
m GeV^{-2}}$ from HERA J/Ψ prod'n

much smaller than in soft hadronic procs.

• for valence quarks $(q - \bar{q})$ get $\alpha' \sim 0.9 \, {\rm GeV}^{-2}$ in GPD models fitted to e.m. form factors MD et al '04; Guidal et al '04; MD, Kroll '13

in line with meson Regge trajectories

direct measurement in scattering experiments?

value for sea quarks? cross talk with gluons?

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Spin and orbital angular momentum

- GPD $E \leftrightarrow$ nucleon helicity flip $\langle \downarrow | \mathcal{O} | \uparrow \rangle$
 - →→ interference between wave fcts. with L^z and $L^z \pm 1$ no direct relation with $\langle L^z \rangle$, but indicator of large L^z
- ▶ helicity flip ↔ transverse polarisation asymmetry parton dist's in proton polarised along x are shifted along y:

$$f^{\uparrow}(x, \mathbf{b}) = f(x, b^2) - \frac{b^y}{m} \frac{\partial}{\partial b^2} e(x, b^2)$$

 $e(x, b^2) =$ Fourier transform of $E(x, \xi = 0, \Delta_T)$

▶ connection to orbital angular momentum via *b* × *p* ▶ shift known to be large for valence combinations *u* − *ū*, *d* − *d* from sum rule connecting with magnetic moments of *p* and *n* unknown for sea guarks and gluons

Burkardt '02, '05; Burkardt and Schnell '05

E key part of Ji's angular momentum sum rule

$$2J^{q} = \int dx \, x[q(x) + \bar{q}(x)] + \int dx \, x[e^{q}(x) + e^{\bar{q}}(x)]$$

and its analogue for gluons

00000 0000 0	Introduction	GPDs	TMDs	Wigner fcts	Summary
	000000	00000	0000	0	0

Exclusive processes

 \rightarrow talk by C Hyde

Compton scattering: deeply virtual (DVCS) or timelike (TCS)

$$ep \to ep\gamma \text{ or } \gamma p \to \ell^+ \ell^- p$$

• best theory control: NNLO, twist three, corr's in m^2/Q^2 and t/Q^2

Müller et al., Braun and Manashov

- interference with Bethe-Heitler process (calculable)
 - \rightarrow phase of Compton amplitude

meson production

- many channels, separation of quark flavors and gluons
- theory more involved: meson wave fct. NLO and 1/Q corrections can be large
- strong indications that need $Q^2\gtrsim {\rm several}~10\,{\rm GeV}^2$ to reach factorisation regime

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	0000	0000	0	0

JLab@12 GeV and EIC

- different x ranges \rightsquigarrow different configurations in nucleon
- special opportunity at 12 GeV: very rare processes double DVCS
 - $\gamma^*p \to \gamma^*p$ measured in $ep \to e + \mu^+\mu^- + p$
 - two independent photon virtualities
 → more detailed access to longitudinal kinematics
 → disentangle x and ξ in GPDs
- special opportunities at EIC
 - high $Q^2 \rightsquigarrow$ greater lever arm for scale evolution, cleaner theory for meson production
 - production of J/Ψ and $\Upsilon \; \rightsquigarrow$ selects gluons in target diminished thy. uncertainty from meson wave function

rate estimates cf. e.g. talk by S Joosten at QCD Evolution 2018

at 12 GeV J/Ψ prod'n close to threshold \rightsquigarrow dynamics not described by GPDs

Special opportunity wherever can be realised: positron beam DVCS beam charge asymmetry → clean access to Compton amplitude via interference with Bethe-Heitler

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	•000	0	0

$Transverse momentum dependent distributions \quad \rightarrow {\sf talk \ by \ H \ Gao}$

- theoretical description of transv. momenta in final state:
 - for small transv. momenta (or transv. momentum differences) described by transv. mom. dependent distributions etc.
 - if large then generate perturbatively = hard radiation
 - graphs for SIDIS $ep \rightarrow eh + X$:

analogous for Drell-Yan process $pp \to \ell^+\ell^- + X$

no sharp boundary between "intrinsic" and "radiative" regimes but transition between the two interesting and practically relevant basic theory well understood, open questions remain

cf. e.g. Bacchetta et al '08; Collins et al '16; Gamberg et al '17

 radiative corrections known at NLO, in parts also NNLO partial understanding of 1/Q corrections

cf. e.g. talk by A Vladimirov at QCD Evolution 2018

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

The importance of gluons "accompanying" a parton

- in general, coloured objects are surrounded by gluons profound consequence of gauge invariance technically implemented in Wilson lines
- k_T dep't distributions can be time reversal odd
 e.g. Sivers function: unpol. quarks in proton pol. along x axis:

$$f^{X}(x, \mathbf{k}_{T}) = f(x, k_{T}^{2}) + \frac{k^{y}}{M} f_{1T}^{\perp}(x, k_{T}^{2})$$

Sivers fct. has opposite sign when gluons couple after quark scatters (SIDIS) or before quark annihilates (DY) would be zero if gluons were absent

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

The importance of gluons "accompanying" a parton

- in general, coloured objects are surrounded by gluons profound consequence of gauge invariance technically implemented in Wilson lines
- k_T dep't distributions can be time reversal odd
 e.g. Sivers function: unpol. quarks in proton pol. along x axis:

$$f^{X}(x, \mathbf{k}_{T}) = f(x, k_{T}^{2}) + \frac{k^{y}}{M} f_{1T}^{\perp}(x, k_{T}^{2})$$

Sivers fct. has opposite sign when gluons couple after quark scatters (SIDIS) or before quark annihilates (DY) would be zero if gluons were absent

fragment'n fct's: similar dynamics, with important differences

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Orbital angular momentum again

 Sivers fct. ↔ proton helicity flip
 → interference of config's with L^z and L'_z = L^z ± 1 another indicator of L^z

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

Orbital angular momentum again

- chromodynamic lensing: transverse shift in b space (described by E)
 → transverse shift in k_T (described by f[⊥]_{1T})
 - generated by gluon exchange, opposite signs for SIDIS and DY
 - no calculation in full QCD (is highly nonperturbative) but seen in model calculations

should test experimentally for different x and different parton species

both E and f[⊥]_{1T} exist for quarks and gluons could become sizeable at small x by parton splitting, provided that are not small at low scale/low k_T

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	0

JLab@12 GeV and EIC

- ▶ different x ranges \rightsquigarrow different configurations in nucleon
- ► challenge at 12 GeV: factorisation for SIDIS $ep \rightarrow eh + X$ requires large invariant hadronic mass: $m_X \gg$ resonance masses

$$m_X^2 = Q^2 \frac{x_B}{1 - x_B} (1 - z) - \frac{1}{z} P_{h\perp}^2$$

+hadron mass terms

detailed analysis: Boglione et al '17

at EIC: several benefits from larger phase space:

- larger $Q^2 \rightsquigarrow$ higher theory precision can study scale evolution
- large range of hadron transv. mom. $P_{h\perp}$
 - \rightsquigarrow study transition between "intrinsic" and "radiative" regimes

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	•	0

Wigner functions

- relatively young field, many aspects remain to be worked out
- theory tool to relate GPDs and TMDs, exhibit unifying aspects work by Metz et al; Hatta et al; Lorcé and Pasquini; Rajan et al

▶ direct measurement possible? proposal: exclusive electroproduction of dijets $ep \rightarrow e + jet 1 + jet 2 + p$

Hatta, Xiao, Yuan '16

- access to generalised TMDs (x, q, ξ, Δ)
- open questions regarding theory quite sure that need γ*, not photoproduction and experimental realisation
- requires EIC at high energy

also discussed in small-x framework and in collinear factorisation (GPDs)

plot: Y Hatta at POETIC 2018

Altinoluk et al '15; Boussarie et al '16 Braun, Ivanov '05

Introduction	GPDs	TMDs	Wigner fcts	Summary
000000	00000	0000	0	•

Summary

 exclusive and semi-inclusive procs. with measured transv. momenta
 study trv. parton position and momentum in quantitative, theoretically controlled ways

 relates to deep concepts and questions in QCD some concrete, others more generic

- interplay of pert. and nonpert. phenomena
 - radiatively generated vs. nonpert. sea, flavour and spin strct.
 - transition from small to large k_T
- spatial distribution of partons in hadron \leftrightarrow confinement
- role of π fluctuations \leftrightarrow chiral dynamics
- spin-orbit correlations (k_T or b_T vs. polarisation)
 → orbital angular momentum
- dynamics of gluons that accompany any coloured particle
 → gauge symmetry, Wilson lines

have common theory framework to interpret meas'ts at 12 GeV and at EIC pointed out specific differences, but see coherent science programme for the two facilities