Nucleon structure investigations from Lattice QCD

Martha Constantinou

Temple University

JLab Users Group Meeting June 18, 2018

In collaboration with

- \star C. Alexandrou^{1,2}
- ★ K. Cichy³
- ★ K. Hadjiyiannakou²
- ★ K. Jansen⁵
- ★ Ch. Kallidonis²
- ★ G. Koutsou ²
- ★ H. Panagopoulos¹
- ★ A. Scapellato¹
- ★ F. Steffens⁵
- ★ A. Vaquero²
- ★ Ch. Wiese 5

- 1. University of Cyprus
- 2. Cyprus Institute
- 3. Adam Mickiewicz University
- 4. Temple University
- 5. DESY Zeuthen

OUTLINE OF TALK

A. Motivation

B. Introduction to Lattice QCD

C. Selected nucleon structure studies

- 1. E/M form factors
- 2. Direct access to PDFs

D. Discussion

Motivation

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 三 のへの

Lattice QCD meets Nature

[M. Vanderhaeghen]

- ★ 4-D discretization, ab initio formulation of QCD
- ★ Make contact with well-known experimental data
- Provide input for quantities not easily accessible in experiments
- ★ Guide New Physics searches

Synergy with JLab program

🛨 Hall A:

- **E1207108** Precision Measurement of the Proton Elastic Cross Section at High Q^2
- E1207109 Proton Form Factor Ratio Measurements at 13 and 15 $(GeV/c)^2$
- E1209016 Measurement of Neutron EM Form Factor Ratio G_E^n/G_M^n at High Q^2
- Measurement of the Neutron Magnetic Form Factor W of $Q^2=18.0 (GeV/c)^2$ Measurement of the $F_2^n/F_p^2,\,d/u$ Ratios and A=3 EMC Effect in DIS E1209019
- E1210103
- Ratio of the electric form factor in the mirror nuclei 3He and 3H E1214009
- E1214011 Proton and Neutron Momentum Distributions in A=3 Asymmetric Nuclei

Hall B:

- E1206109 The Longitudinal Spin Structure of the Nucleon
- E1206112 Probing Proton's Quark Dynamics in Semi-Inclusive Pion Production at 12 GeV
- E1206113 The Structure of the Free Neutron at Large x-Bjorken
- E1211106 High Precision Measurement of the Proton Charge Radius

+ Hall C:

E1210002 Precision measurements of F_2 at large x in the resonance region and beyond E1211009 G_E^n at Q^2 up to 7 $(GeV/c)^2$ from the Reaction d(e, e'n)p via Recoil Polarimetry

Theory Group:

- **Barvon and Meson Form Factors**
- Proton radius and spin
- x-dependent PDFs (pseudo-PDFs, good Lattice Cross Sections)
- and many more

Probing Nucleon Structure

Parton Distribution Functions

- Universal quantities for the description of the nucleon's structure (non-perturbative nature)
- ★ 1-dimensional picture of nucleon structure
- ★ Distribution functions are necessary for the analysis of Deep inelastic scattering data
- Parametrized in terms of off-forward matrix of light-cone operators
- ★ Not directly accessible in a euclidean lattice

PDFs on the Lattice

★ Moments of PDFs easily accessible in lattice QCD

- one relies on OPE to reconstruct the PDFs
- reconstruction difficult task:
 - ⇒ signal-to-noise is bad for higher moments
 - ⇒ n > 3: operator mixing (unavoidable!)

PDFs on the Lattice

★ Moments of PDFs easily accessible in lattice QCD

- one relies on OPE to reconstruct the PDFs
- reconstruction difficult task:
 - ⇒ signal-to-noise is bad for higher moments
 - ⇒ n > 3: operator mixing (unavoidable!)

★ Alternative approaches to access PDFs

- Hadronic Tensor [K.F. Liu, Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
- Compton amplitude and OPE [A. Chambers et al. (QCDSF), [arXiv:1703.01153]

PDFs on the Lattice

★ Moments of PDFs easily accessible in lattice QCD

- one relies on OPE to reconstruct the PDFs
- reconstruction difficult task:
 - ⇒ signal-to-noise is bad for higher moments
 - ⇒ n > 3: operator mixing (unavoidable!)

★ Alternative approaches to access PDFs

- Hadronic Tensor [K.F. Liu, Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
- Compton amplitude and OPE [A. Chambers et al. (QCDSF), [arXiv:1703.01153]

★ Direct access to PDFs

- quasi-PDFs
- pseudo-PDFs
- good lattice cross-sections

[X. Ji, arXiv:1305.1539]

[A. Radyushkin, arXiv:1705.01488]

[Y-Q Ma&J. Qiu, arXiv:1709.03018]

(□) (同) (E) (E)

Introduction

to Lattice QCD

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 三 - ∽へ⊙

Lattice formulation of QCD

★ Space-time discretization on a finite-sized 4-D lattice

- Quark fields on lattice points
- Gluons on links
- ★ Serves as a regulator
 - UV cut-off: inverse lat. spacing
 - IR cut-off: inverse lattice size

courtesy: USQCD

Lattice formulation of QCD

 Space-time discretization on a finite-sized 4-D lattice

- Quark fields on lattice points
- Gluons on links
- ★ Serves as a regulator
 - UV cut-off: inverse lat. spacing
 - IR cut-off: inverse lattice size

Technical Aspects

★ Parameters (define cost of simulations):

- quark masses (aim at physical values)
- lattice spacing (ideally fine lattices)
- lattice size (need large volumes)

★ Discretization not unique:

- Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall
- Mixed actions

Multi-component task:

1. Computation of 2pt- and 3pt-functions

Multi-component task:

1. Computation of 2pt- and 3pt-functions

2. Construction of optimized ratio

$$R^{\mu}_{\mathcal{O}}(\Gamma, \vec{q}, t) = \frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G(\vec{0}, t_f)} \times \sqrt{\frac{G(-\vec{q}, t_f - t)G(\vec{0}, t)G(\vec{0}, t_f)}{G(\vec{0}, t_f - t)G(-\vec{q}, t)G(-\vec{q}, t_f)}}$$

3. Computation of 2pt- and 3pt-functions

Plateau Method: $R_{\mathcal{O}}(\Gamma, \vec{q}, t) \stackrel{t_{f} \rightarrow \vec{t} \rightarrow \infty}{t - t_{i} \rightarrow \infty} \Pi^{\mu}(\Gamma, \vec{q})$ 2-state fits: Summation Method:

$$\sum_{t} R_{\mathcal{O}}(\Gamma, \vec{q}, t) \xrightarrow{\rightarrow} \mathcal{C} + \Pi^{\mu}(\Gamma, \vec{q}) \cdot t_{f}$$

3. Computation of 2pt- and 3pt-functions

4. Renormalization:

connection to experiments

 $\Pi^R(\Gamma, \vec{q}) = \mathbb{Z}_{\mathcal{O}} \Pi(\Gamma, \vec{q})$

Simpler case!

3. Computation of 2pt- and 3pt-functions

4. Renormalization:

connection to experiments

 $\Pi^R(\Gamma,\vec{q}) = \mathbb{Z}_{\mathcal{O}} \,\Pi(\Gamma,\vec{q})$

Simpler case!

5. Extraction of form factors e.g. Axial current:

$$A_{\mu}^{3} \equiv \bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{3}}{2} \psi \Rightarrow \bar{u}_{N}(p') \left[\mathbf{G}_{\mathbf{A}}(\mathbf{q}^{2}) \gamma_{\mu} \gamma_{5} + \mathbf{G}_{\mathbf{p}}(\mathbf{q}^{2}) \frac{q_{\mu} \gamma_{5}}{2 m_{N}} \right] u_{N}(p)$$

Inherited Uncertainties

Laborious effort to eliminate uncertainties

Statistical errors significantly increase with:

- ★ decrease of pion mass
- \star increase of momentum transfer Q^2 between source-sink
- \star increase of source-sink separation ($T_{\rm sink}$)

Systematic

- ★ Cut-off Effects due to finite lattice spacing
- ★ Finite Volume Effects
- ★ Contamination from other hadron states
- ★ Chiral extrapolation for unphysical pion mass
- ★ Renormalization and mixing

C Nucleon Structure

E/M Form Factors

1

◆□▶▲@▶▲≧▶▲≣▶ ≡ ∽0.00

Nucleon EM Form Factors

New ensemble @ physical point:

★ $N_f=2+1+1$ Twisted Mass fermions with clover term ★ $64^3 \times 128$, a=0.08 fm

★ excited states investigations: $T_{sink}=1-1.6 \text{fm}$

Nucleon EM Form Factors

Study extended to:

- ★ Connected isoscalar flavor combination u+d
- ★ Disconnected contributions (very noisy, comput. costly)

allow flavor decomposition

Nucleon EM Form Factors (disconnected)

□→ ▲母 → ▲ 臣 → ▲ 臣 → ● 17

C Nucleon Structure

2

Direct Access to PDFs

▲□▶▲@▶▲≧▶▲≧▶ ≧ わえで

Access of PDFs on a Euclidean Lattice

Novel direct approach: [X.Ji, Phys. Rev. Lett. 110 (2013) 262002, arXiv:1305.1539]

- ★ Matrix elements of spatial operators with a Wilson line (length z)
- ★ Nucleon is boosted with momentum in spatial direction (e.g. z)
- ★ Renormalization more complicated than other nucleon quantities

Contact with light-cone PDFs:

★ Difference between quasi-PDFs and light-cone PDFs: $\mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{P_3^2}, \frac{m_N^2}{P_3^2}\right)$

 Matching procedure (in LaMET) necessary (provided that momenta are finite but feasibly large for lattice)

Parameters of Calculation

[C. Alexandrou et al. (ETMC), arXiv:1803.02685]

★ $N_f=2$ Twister Mass fermion action with clover term

★ Ensemble parameters:

$\beta = 2.10$,	$c_{\rm SW} = 1.57751, a = 0.0938(3)(2) \text{ fm}$
$48^3 \times 96$	$a\mu = 0.0009$ $m_N = 0.932(4)$ GeV
$L=4.5~{\rm fm}$	$m_{\pi} = 0.1304(4) \text{ GeV} m_{\pi}L = 2.98(1)$

★ Nucleon Momentum & Measurements

$P = \frac{6\pi}{L}$ (0.83 GeV)			$P = \frac{8\pi}{L}$ (1.11 GeV)			$P = \frac{10\pi}{L}$ (1.38 GeV)		
Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$
γ_3	100	9600	γ_3	425	38250	γ_3	655	58950
γ_0	50	4800	γ_0	425	38250	γ_0	655	58950
$\gamma_5\gamma_3$	65	6240	$\gamma_5\gamma_3$	425	38250	$\gamma_5\gamma_3$	655	58950

Excited states investigation:

 $T_{\rm sink}/a = 8, 10, 12 \ (T_{\rm sink} = 0.75, 0.094, 1.13 {\rm fm})$

Towards light-cone PDFs

- ★ Increasing momentum approaches the phenomenological fits
- **★** Saturation for $p=8\pi/L$ and $p=10\pi/L$
- \star 0<x<0.5 : Lattice polarized PDF overlap with phenomenology
- ★ Negative *x* region: anti-quark contribution

Discussion

◆□▶ ◆@ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 = ∽) ९(?

Discussion

Lattice QCD has become a crucial part in understanding nucleon structure

- ★ Simulations at the physical point
- ★ Addressing open questions (proton radius and spin
- Investigations of more complicated quantities (quasi-PDfs, pseudo-PDFs, good LCSs)

Discussion

Lattice QCD has become a crucial part in understanding nucleon structure

- ★ Simulations at the physical point
- ★ Addressing open questions (proton radius and spin
- Investigations of more complicated quantities (quasi-PDfs, pseudo-PDFs, good LCSs)

Significant progress also in:

- ★ Spectroscopy
- ★ Hadron structure
- ★ Nuclear effects

THANK YOU

TMD Topical Collaboration

Grant No. PHY-1714407