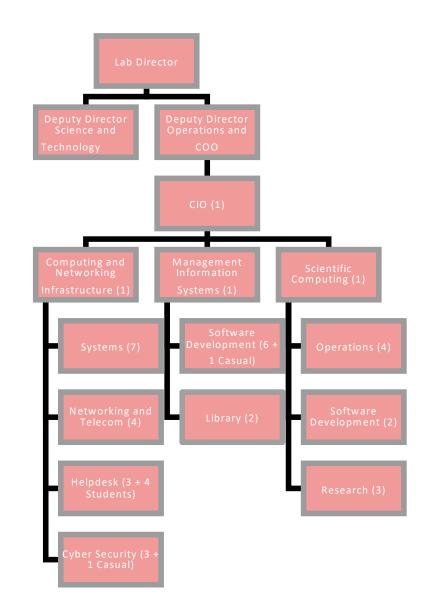
Scientific Computing At Jefferson Lab

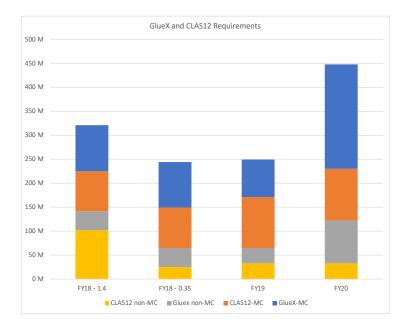
Amber Boehnlein Chief Information Officer IT Division Director


Outline

- The IT Division
- Computing Resources for 12 GeV
- The (nascent) Scientific Computing Strategy

IT Organization

- Overall IT Staff
 - 38 Full Time Staff
 - -1 Casual
 - -4 Students
- Responsible for
 - Networking and Telcom
 - Computing Infrastructure
 - Business Systems
 - -Cyber
 - Scientific Computing
- Within Jefferson Lab close collaborations with
 - Theory on LQCD
 - Physics with Experimental Computing
 - Accelerator Division

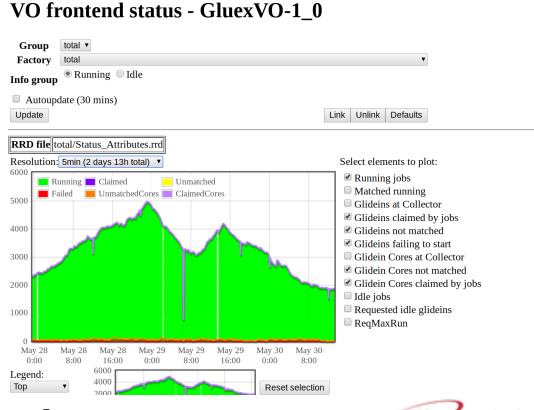


Experimental Computing Planning

- Computing necessary to support the the experimental program
 - Estimates based on spreadsheets of key parameters benchmarked against actual performance
 - Local farm resources
 - Disk, Tape and Networking to support distributed resources
- Making major investments in compute, tape drives, disk including SSD buffer

	Course at	FV/10	51/20
	Current	FY19	FY20
CPU (M- core-hours/year)	37	87	90
Scratch Disk & Cache Disk (PB)	0.65	1.1	2
Tape (GB/s)	3	5	7
WAN bandwidth (Gbps)	10	10	10

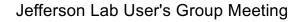
Completed Job History (org)

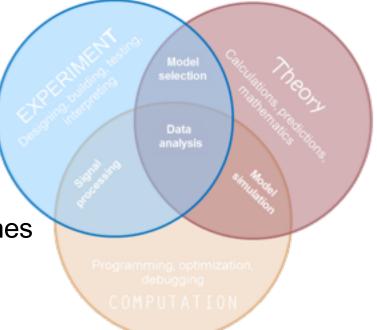

JSA Director's Operations Review

4

Distributed Computing Resources

- Computing at Jefferson Lab Users' institutions have always been essential.
- For 12 GeV, Distributed Computing is part of the planning
- GlueX Monte Carlo Production on the Open Science Grid (OSG)
 Led by Richard Jones (UCONN)
 - Have seen resources comparable to local farm
- Tests of GlueX reconstruction at the National Energy Research Science Computing Center (NERSC)
- Prototyping and beta users on Amazon Web Services

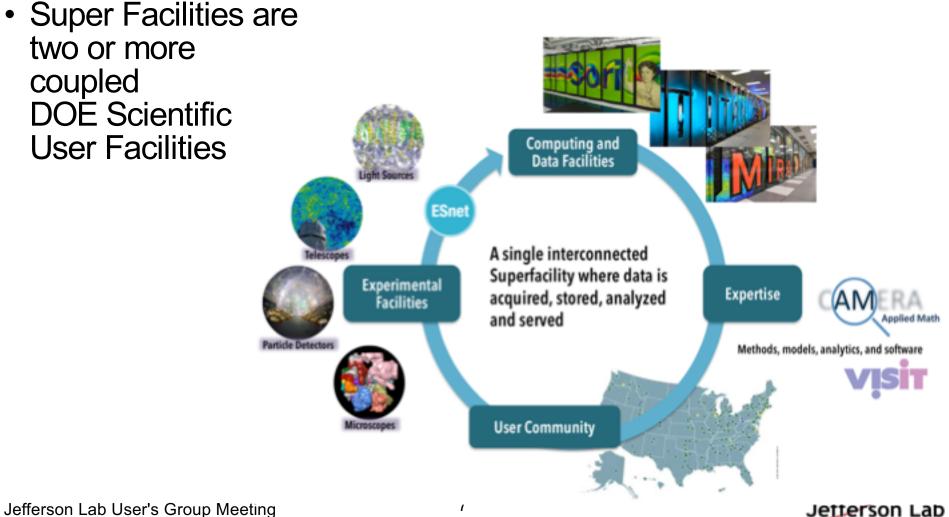



Brow

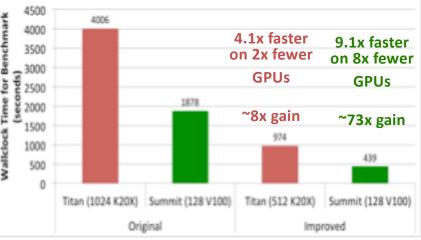
son Lab

Scientific Computing Strategy For Jefferson Lab

- The richness of the Jefferson Lab science program will spur development in theory, experiment and phenomenology
 - 12 GeV era: Multi Channel & Multi Dimensional Science
- Goal: Develop computing and computation for the success of the 12 GeV Physics Program that transitions toward the EIC era with computational science as a pillar
 - The era of 12 GeV Science is coinciding with a revolution in computational techniques and disciplines
 - Machine Learning
 - Data Science
 - Exascale
- Strategy: Contribute to Jefferson Lab Science by expanding and developing unique computational science through *collaborations*.

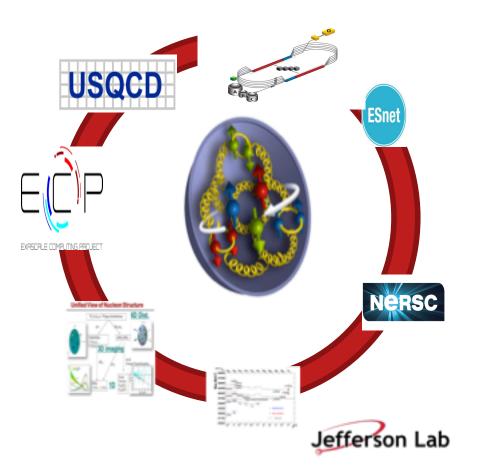


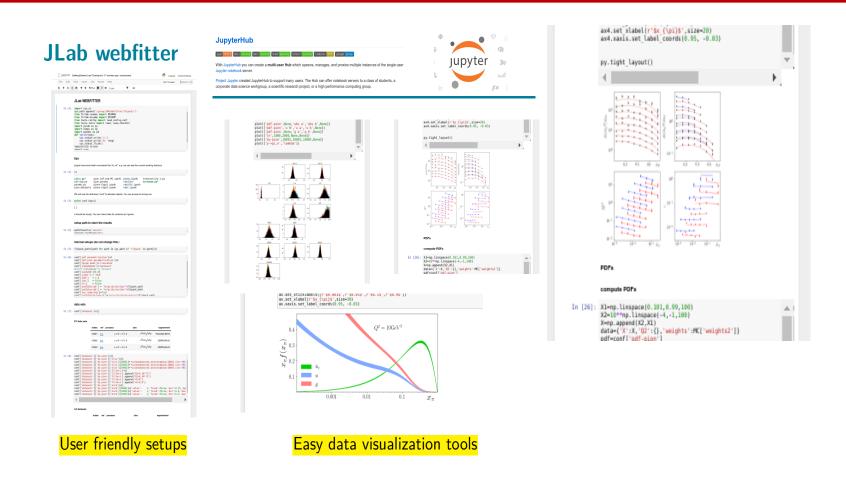
Application Instituted & Super Facility


- Science Application Institutes
 - Cross Disciplinary and often University lead
 - Scientific Discovery Through Advanced Computing (SciDAC)

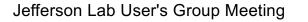
Lattice Quantum Chromodynamics

- Discovery of the properties of hadronic and nuclear matter now possible in the Exascale Computing Project Era
 - Maximal exploitation of advanced leadership hardware capabilities allow previously unaffordable calculations
- World Class Program in Theory and Computational Science
 - Partnerships with NVIDIA and Intel
 - New Nuclear Physics Hardware
 - Extended SciPhy XVI cluster Xeon Phi KNL by 12,240 cores
 - -SciDAC4
 - Exascale Computing Project
 - Oakridge Leadership Facility: Summit





Positioning towards a Strategy


- Building towards software institutes is a long process
- In the meantime, we have jobs to do.
- · Foster current activities that build towards strategy
- Experimental Computing:
 - Stream Readout Laboratory
 - Flexibility to reduce temporal and geometric detector constraints
 - Explore analysis implications
 - Foster 'Super Facility' mindset: GlueX production at NERSC
 - Data repositories and attribution mechanisms for data and software—needs attention
- 3D Tomography Parameter Extraction
 - Using 1D fits as exemplar
 - Improving physics simulations
 - Incubate cross-disciplinary science
 - Institute' approach to develop math, data science and visualization

Parton Distribution Function 'Self-Serve'

- Enable experimentalists to fit 1D Nuclear Structure
- Using theory to motivate experimental parameters
- Introduce Jupyter Notebooks for analysis
- Broad collaboration—Jefferson Lab Physics, Theory and IT + Users

Conclusions

- Significant investments in onsite computing for the 12 GeV program
- Also making investments to facilitate distributed computing
- Developing a Scientific Computing Strategy that integrates advances in computing and computation and relies on explicit collaboration
 - Gentle positioning has begun with 12 GeV Science.
- Questions?

Super Facility – Courtesy of NERSC

https://people.eecs.berkeley.edu /~yelick/talks/data/Superfacility-TechX17.pdf

