GDH Sum Rule at JLab Hall B

Yelena Prok MIT For the CLAS and EG4 collaborations

June 12, 2006

GDH Sum Rule

$$I_{GDH} = \frac{M^2}{8\alpha\pi^2} \int_{thr}^{\infty} (\sigma_{1/2} - \sigma_{3/2}) \frac{d\nu}{\nu} = -\frac{1}{4}\kappa^2$$

 relates the difference of the photo-absorption cross section for helicity 1/2 and 3/2 to the nucleon magnetic moment, i.e. a connection between dynamic and static properties. Recent measurements at Bonn and Mainz, ongoing efforts at other labs

 based on very general principles, as gauge invariance, dispersion relation, low energy theorem

 \blacklozenge at non-zero Q² can be related to the integral of the spin structure function g_1

$$\Gamma_1 = \int g_1(x, Q^2) dx \xrightarrow{Q^2 \to 0} \frac{Q^2}{2M^2} I_{GDH}$$

 strong variation of nucleon spin properties as a function of Q²

Asymmetries and Spin Structure Functions

 $\frac{d\sigma}{dE'd\Omega} = \Gamma_{v} \left[\sigma_{T} + \varepsilon \sigma_{L} + P_{e} P_{t} \left(\sqrt{1 - \varepsilon^{2}} \mathbf{A}_{1} \sigma_{T} \cos \psi + \sqrt{2\varepsilon (1 - \varepsilon)} \mathbf{A}_{2} \sigma_{T} \sin \psi \right) \right]$ $\mathbf{A}_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{T}} \quad \mathbf{A}_{2} = \frac{\sigma_{LT'}}{\sigma_{T}}$

the structure functions A_1 and A_2 can be extracted by varying the direction of the nucleon polarization

 $A^{\parallel} = D(A_1 + \eta A_2)$ $A^{\perp} = d(A_1 + \zeta A_2)$

where D, η , d, ξ are function of Q², W, E_0, R

the structure functions $\mathbf{g_1}$ and $\mathbf{g_2}$ are linear combination of $\mathbf{A_1}$ and $\mathbf{A_2}$

$$\mathbf{g_1}(\mathbf{x}, \mathbf{Q^2}) = \frac{Q^2}{Q^2 + 4M^2 x^2} \left(A_1 + \frac{2Mx}{\sqrt{Q^2}} A_2 \right) F_1(\mathbf{x}, Q^2)$$
$$\mathbf{g_2}(\mathbf{x}, \mathbf{Q^2}) = \frac{Q^2}{Q^2 + 4M^2 x^2} \left(\frac{\sqrt{Q^2}}{2Mx} A_2 - A_1 \right) F_1(\mathbf{x}, Q^2)$$

Recent Measurements with CLAS

$$g_1(x,Q^2) = \frac{Q^2}{Q^2 + 4M^2 x^2} \left(A_1 + \frac{2Mx}{\sqrt{Q^2}} A_2 \right) F_1(x,Q^2)$$

 $\Gamma_1 = s g_1(x,Q^2) dx$

Integral goes down to Q^2 of 0.05 GeV²

Shows strong Q² dependence varying from negative to positive values as Q² increases

Significant systematic uncertainties due to parameterization of F_1 and R

E-03-006 (EG4) The GDH Sum Rule with nearly real photons

- Measurement of spin structure function g₁(x,Q²) at Q² down to 0.015 GeV² (θ_{min}= 6 degrees)
- Test of χ PT at Q2 \rightarrow 0
- Measurement of the absolute cross section difference:

$$\frac{d\sigma^{\rightarrow \Leftarrow}}{d\Omega dE'} - \frac{d\sigma^{\rightarrow \Rightarrow}}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{ME v Q^2} \left[\left(E - E' \cos \theta \right) g_1 \left(x, Q^2 \right) - 2M x g_2 \left(x, Q^2 \right) \right]$$

Cross section measurement requires uniform detection efficiency at low Q²! new Cerenkov detector built by INFN-Genova to detect scattered electrons down to 4.5 degrees

Experimental Setup

- ♦ large kinematical coverage
- simultaneous measurement of exclusive and inclusive reactions
- central field-free region well suited for the insertion of the polarized target

CEBAF Large Acceptance Spectrometer

New Cerenkov Counter

"Old" Cerenkov counter was designed to maximize the azimuthal coverage Complex geometry Components optimized for high Q², low-rate experiments using the inbending electron tracks.

New CC counter Optimized for this experiment Uniform detection efficiency

Side view of CLAS with new CC

The red track corresponds to an electron emitted at 6 degrees

Polarized Target

E03-006 /E03-111 Status

- Completed data taking in May 2006
- ¹⁵NH₃ target: E=1.0, 1.3, 1.5, 2.2, 3.0 GeV 15.8 billion triggers Target polarization 80-90%
- ¹⁵ND₃ target E=1.3, 2.0 GeV
 6.3 billion triggers Target Polarization 30-45%
- Improved DAQ rate, ~8.5 kH

E-03-006 (cont)

Extraction of P_bP_t

$$A_{th}^{el} = \frac{2\tau r * \left[\frac{m_p}{e} + r(\tau \frac{m_p}{e} + (1+\tau)tan^2(\frac{\theta}{2}))\right]}{1 + \tau \frac{r^2}{\epsilon}}$$

Normalize to carbon

E-03-006 (¹⁵ND₃ run)

Achieved high deuterium polarization, up to 45 %.

This estimation is based on the method of "peak heights" ratio: R=r1/r2 Pt=(1-R²)/(R²+R+1)

(C.Dulya et al.,NIM A354 (1995) 249)

Expected Results

$$\frac{d\sigma^{\rightarrow \Leftarrow}}{d\Omega dE'} - \frac{d\sigma^{\rightarrow \Rightarrow}}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{ME_V Q^2} \left[\left(E - E' \cos \theta \right) g_1 \left(\mathbf{x}, Q^2 \right) - 2M \mathbf{x} g_2 \left(\mathbf{x}, Q^2 \right) \right]$$

Summary and Outlook

- Accumulated full statistics proposed for the experiment
- Currently in the calibration stage
- Rich physics program:
- > Behavior of the spin structure function $g_1(x,Q^2)$ at very low Q^2
- > Test of the Generalized GDH Sum rule
- Study of the single spin asymmetries
- > 2 π and η production
- >
- Several dedicated students working on the experiment
- Expect results soon..