Parity-Violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II

Bryan Moffit College of William and Mary

The HAPPEX Collaboration

Thomas Jefferson National Accelerator Facility - Argonne National Laboratory - CSU, Los Angeles -College of William and Mary - Duke - DSM/DAPNIA/SPhN CEA Saclay - FIU - Harvard - INFN, Rome -INFN, Bari - IAE, Beijing - IPT Kharkov - Jozef Stefan Institute - Kent State - MIT - NPIRAS, St. Petersburg - ODU - Rutgers - Smith College - Syracuse - Temple - U. Blaise Pascal - U. of Illinois Urbana-Champaign - UMass, Amherst - U. of Kentucky - U. of Virginia - UST, Heifei

e

Strange Quarks in the Nucleon

Spin - polarized DIS Inclusive: $\Delta s = -0.10 \pm 0.06$ uncertainties from SU(3), extrapolation Semi-inclusive: $\Delta s = 0.03 \pm 0.03$ fragmentation function Strange Mass πN scattering: 0-30% Strange vector FF $\langle N|\bar{s}\gamma^{\mu}\gamma^{5}s|N\rangle$

 $\langle N|\bar{s}s|N\rangle$

 $\langle N|\bar{s}\gamma^{\mu}s|N\rangle$

Strange sea is well-known, but contributions to nucleon matrix elements are somewhat unsettled

Parity-Violating Electron Scattering

 $\mathcal{M}^{EM} = \frac{4\pi\alpha}{Q^2} Q_l l^\mu J^{EM}_\mu \quad \mathcal{M}^{NC}_{PV} = \frac{G_F}{2\sqrt{2}} \left[g_A l^{\mu 5} J^{NC}_\mu + g_V l^\mu J^{NC}_{\mu 5} \right]$

Interference with EM amplitude makes NC amplitude accessible

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{|\mathcal{M}_{PV}^{NC}|}{|\mathcal{M}^{EM}|} \sim \frac{Q^2}{(M_Z)^2}$$

Parity-Violating Electron Scattering

For a proton:

$$A_{PV} = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{A_E + A_M + A_A}{\sigma_p}$$

$$A_E = \epsilon G_E^p G_E^Z \qquad A_M = \tau G_M^p G_M^Z \qquad A_A = -(1 - 4\sin^2\theta_W) \epsilon' G_M^p G_A^e$$
Forward angle
$$G_{E,M}^Z = (1 - 4\sin^2\theta_W) G_{E,M}^p - G_{E,M}^n - G_{E,M}^s$$

For ⁴He:

$$A_{PV} = \frac{G_F Q^2}{\pi \alpha \sqrt{2}} \left[\sin^2 \theta_W + \frac{G_E^s}{2(G_E^p + G_E^n)} \right]$$

World Data at $Q^2 \sim 0.1 \ GeV^2$

The College of -

WILLIAM & MARY

Note: excellent agreement of world data set

 G_E^s = -0.12 \pm 0.29

$$G^s_M$$
 = 0.62 \pm 0.32

Would imply that 5-10% of nucleon magnetic moment is Strange

World Data

- \bullet Suggested large values at $Q^2 \sim 0.1 \mbox{ GeV}^2$
 - HAPPEX-II, H and He (2005)
- \bullet Large possible cancellation at $Q^2 \sim 0.2 \; GeV^2$
 - G⁰ backangle
 - A4 backangle
- Possible large values at Q^2 >0.4 GeV²
 - G⁰ backangle
 - HAPPEX-III
 - A4 backangle

WILLIAM & MARY

Measurement of PV Asymmetries

 $A_{LR} = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \simeq 10^{-6}$ 5% Statistical Precision on 1ppm \rightarrow requires 4x10¹⁴ counts

Rapid Helicity Flip: Measure the asymmetry at few 10^{-4} level, 30 million times

$$A_{LR} = \frac{N_R - N_L}{N_R + N_L}$$

- Analog integration over entire window (33 ms) (detectors, beam current and position monitors)
- RMS: Control noise (target, electronics)
- Mean: Minimize and accurately correct for false asymmetries

Statistics: Systematics: Normalization: High rate, Low noise Beam asymmetries, Backgrounds Polarization, Linearity, Backgrounds

Hall A

Focal Plane Detectors

Polarized Source

- Optical pumping of solid state photocathode
- High Polarization (>85%)
- Pockels cell allows rapid helicity flip (30 Hz)
- Slow helicity flip (1/day) to check answer and further cancel beam asymmetries
- Careful configuration to reduce beam asymmetries

Beam Position Differences, Helium

Beam Position Corrections- Helium

Beam Position Corrections- Hydrogen

Raw and Corrected Left Asymmetry

The College of -

WILLIAM & MARY

Surpassed Beam Goals for Hydrogen Run

Energy -0.25 ppb X Target: 1 nm X Angle: -2 nm Y Target: -1 nm Y Angle: <1 nm

Raw and Corrected for Left Arm Only! Superimposed!

Total correction for beam position asymmetry on Left, Right, or ALL detector: 0.010 ppm

(A $_{raw}$ = -1.418 \pm 0.105 ppm)

Compton Polarimetry (results)

Helium ran with lower beam energy, making analysis significantly more challenging. New developements in γ & $e^$ analyses. Anticipate <2% systematic uncertainty.

Backgrounds

Dedicated runs at very low current using track reconstruction of the HRS

Total systematic uncertainty contributions: \sim 40 ppb (Helium), \sim 15 ppb (Hydrogen)

efferson G

Q² Central Scattering Angle

4-Momentum Transfer Squared

$$Q^2 = 2EE'(1 - \cos\theta)$$

$$\delta\theta_{survey} \simeq 1\% \implies \delta Q^2 \simeq 2\% \text{ (Goal } \delta Q^2\text{: 1\%)}$$

¹H Preliminary Results

Raw Parity Violating Asymmetry ~ 25 M pairs, width ~ 540 ppm $A_{\rm raw}$ correction ~ 11 ppb

The College of -

WILLIAM & MARY

Q² = 0.1089 \pm 0.0011 GeV² A_{raw} = -1.418 \pm 0.105 ppm (stat)

⁴He Preliminary Results

Raw Parity Violating Asymmetry \sim 30 M pairs, width \sim 1130 ppm $A_{\rm raw}$ correction \sim 0.12 ppm

The College of -

WILLIAM & MARY

HAPPEX-II 2005 Preliminary Results

HAPPEX-⁴He:

Q² = 0.0772 \pm 0.0007 (GeV/c)² A_{PV} = +6.43 \pm 0.23 (stat) \pm 0.22 (syst) ppm

A(G^s=0) = +6.37 ppm

 $\textbf{\textit{G}}_{E}^{s} \texttt{= 0.004} \pm \textbf{0.014}_{(stat)} \pm \textbf{0.013}_{(syst)}$

HAPPEX-H:

 Q^2 = 0.1089 ± 0.0011 (GeV/c)² A_{PV} = -1.60 ± 0.12 (stat) ± 0.05 (syst) ppm

A(G^s=0) = -1.640 \pm 0.041 $_{(FF)}$ ppm

G_E^s + 0.088 G_M^s = 0.004 ± 0.011 $_{(stat)}$ ± 0.005 $_{(syst)}$ ± 0.004 $_{(FF)}$

World Data... $Q^2 \sim 0.1 \ GeV^2$

The College of -

WILLIAM & MARY

 G^s_M = 0.28 \pm 0.20 G^s_E = -0.006 \pm 0.016

 \sim 3% \pm 2.3% of proton magnetic moment

 \sim 0.2% \pm 0.5% of Electric distribution

HAPPEX-only fit suggests something even smaller: G_M^s = 0.12 ± 0.24 G_E^s = -0.002 ± 0.017

Summary and Outlook

Summary and Outlook

Extra Slides

Error Budget - Helium 2005

False Asymmetries	48 ppb
Polarization	192 ppb
Linearity	58 ppb
Radiative Corrections	6 ppb
Q ² Uncertainty	58 ppb
Al background	32 ppb
Helium quasi-elastic background	24 ppb
Total	216 ppb

Error Budget - Hydrogen 2005

False Asymmetries	17 ppb
Polarization	37 ppb
Linearity	15 ppb
Radiative Corrections	3 ppb
Q ² Uncertainty	16 ppb
Al background	15 ppb
Rescattering background	4 ppb
Total	49 ppb

Q^2 Error Summary

Error Source	Error	Percent Error in Q^2	
Scattering Angle	0.01 °	0.4 %	
HRS Momentum Scale	5 MeV	0.2 %	
Beam Energy	3 MeV	0.1 %	
Matrix Elements:			
A† Z = 0		0.3 %	
Z dependence		0.1 %	
ADC Weighting		He: 0.1 % H: 0.5 %	
Drifts in Time		0.6 %	
Rate Dependence		He: 0.3 % H: 0.1 %	
Total Systematic Error		He: 0.9 % H: 1.0 %	
Statistical Error		≤0.1 %	
TOTAL ERROR		He: 0.9 % H: 1.0 %	
Contribution to δA_{PV} (syst)		He: 58 ppb H: 16 ppb	

Correcting Beam Asymmetries

$$A_{\rm raw} = A_{\rm det} - A_{\rm Q} + \sum_{i=1}^{5} \beta_i \Delta x_i$$

Slopes from

- natural beam jitter (regression)
- beam modulation (dithering)

"Regression"

- Natural beam motion measure $dA/d\Delta x_i$
- Simultaneous fit establishes independent sensitivities
- By definition, removes correlation of asymmetry to beam monitors
- Sensitive to highly correlated beam motion and electronics noise

"Dithering"

- Induce non-HC beam motion with coils, measure dS/dC_i , dx/dC_i
- Relate slopes to dS/dx_i
- Not compromised by correlated beam motion
- Robust, clear signals for failures
- Sensitive to non-linearities

Beam Modulation

Beam Modulation

Compton Polarimetry

- Non-invasive, continuous polarimetry
- 2% systematic error at 3 GeV

he College of -

WILLIAM & MARY

- Independent photon and electron analyses
- Cross-checked with Hall A Møller, 5 MeV Mott

