An Update on the Measurement of the Neutron Magnetic Form Factor G_M^n at CLAS

Jeff Lachniet

Old Dominion University

J.Lachniet, ODU - p.1

Experimental technique

Measure the ratio of quasi-elastic electron-neutron to electron-proton cross section on a deuterium target

$$R = \frac{\frac{d\sigma}{d\Omega} \left(D(e, e'n) \right)}{\frac{d\sigma}{d\Omega} \left(D(e, e'p) \right)} = a(Q^2) \frac{\frac{G_{En}^2 + \tau G_{Mn}^2}{1 + \tau} + 2\tau G_{Mn}^2 \tan^2(\frac{\Theta}{2})}{\frac{G_{Ep}^2 + \tau G_{Mp}^2}{1 + \tau} + 2\tau G_{Mp}^2 \tan^2(\frac{\Theta}{2})}$$

This ratio is nearly equal to the ratio of *free* electron-neutron to electron-proton cross sections. Deviations from this assumption are parameterized in the factor $a(Q^2)$, which can be calculated from deuteron models, and are small at large Q^2 .

Once the model corrections have been applied to R, the well-measured proton cross section can be used to extract G_M^n . The contribution to the cross-section from G_E^n is small relative to G_M^n , so although G_E^n is not known with high precision, it is a small source of uncertainty.

e5 experiment

Data Set:

- Recorded \approx 2.3 billion triggers
- Q^2 range: 0.2 -5.0 $(GeV/c)^2$
 - Dual cell hydrogen/deuterium target
- Hydrogen cell used as tagged neutron source $(ep \rightarrow e\pi^+ n)$ for calibration of neutron detection efficiency in EC,TOF and LAC

Run Conditions:

- E=4.2 GeV, *I*_{torus} = 3375A
- E=2.5 GeV, *I*_{torus} = 2250A
- E=2.5 GeV, *I*_{torus} = -2250A

Dual Cell Cryotarget

Neutron Detection Efficiency Measurement (SC)

 W^2 vs ϕ in ep elastic scat-1.1₁ tering, before momentum 70 W² (GeV/c)² 0.95 60 corrections 50 40 0.9 30 0.85 1.1 80 1.05 1 (GeV)² 1 0.95 20 70 0.8 60 10 0.75 50 0.7∟ 0 Λ 50 350 150 200 250 100 300 0.9 ⁰electron 40 0.85 30 0.8 20 0.75 10 W^2 vs ϕ in ep elastic 0 0.7^L 200 350 50 100 150 250 300 $\phi_{electron}$ scattering, after momentum corrections

G_M^n measurement

- The same electron selection criteria as neutron detection efficiency measurement are used, except the vertex cut is shifted to -12.9 < Z < -7.1cm
- Quasi-elastic events are identified using a combination of cuts on W^2 and θ_{pq} (the angle between the virtual photon and the scattered nucleon).
- Efficiency corrections are applied on an event-by-event basis.
- A fiducial cut is applied to match the acceptance for e-n and e-p scattering

Quasi-elastic event selection

Solid-angle matching

G_M^n measurement

- Simulation results are used to correct the ratio for losses near the edge of the acceptance caused by the Fermi-motion of the initial state nucleons.
- Radiative corrections are applied to the en/ep ratio.
- Theoretical corrections are applied to correct for deuteron wave function effects $a(Q^2)$.
- To extract G_M^n from the corrected ratio, the Kelly parametrization of the proton form factors is used along with the Galster fit for G_E^n

Fermi-motion Loss Corrections

The fraction of nucleons scattered at the indicated Q^2 which scattered into the SC acceptance and satisfied the θ_{pq} cuts, as determined by the simulation.

The correction factor to the e-n/e-p ratio for Fermi loss in the SC, for the 4.2 GeV data.

Radiative Corrections

- A modification of the radiative correction code EXCLURAD (Afanasev, et al), originally developed for pion electronprodution is used.
- Diagrams included:

Radiative Corrections

- The reactions of interest are d(e,e'p)n and d(e,e'n)p
- EXCLURAD was modified by changing the masses of the target, detected, and undetected scattered hadrons to values appropriate for quasi-elastic ed scattering.
- The relativistic impulse approximation DEEP code of Van Orden, et al, was installed to generate deuteron response functions.
- Option to have detected hadron as either proton or neutron.
- Inputs to the code are $Q^2, W^2, \cos \theta_{pq}, \phi_{pq}$.
- Output: The ratio of the radiative cross-section to the PWIA result.

Radiative Corrections

Radiative corrections to e-n/e-p ratio for 2.5 GeV data.

Q^2	$1 + \delta_n$	$1 + \delta_p$	f_{rad}
1	0.7956	0.7957	0.9999
2.35	0.8273	0.8273	1.0000
2.45	0.8421	0.8424	0.9996
2.55	0.8568	0.8583	0.9983

- For Q² > 1 (GeV/c)², the Jeschonnek model is used to determine the correction to the ratio due to nuclear effects.
- The model makes a non-relativistic reduction of the nucleon current operator. The AV18 deuteron wave function is used.
- Final-state interactions are implemented using a Glauber approach.
- The ratio $\sigma_{Full}/\sigma_{PWIA}$ is calculated for e p and e n scattering. The ratio of these two gives the correction applied to the measured e n/e p ratio. The results are consistent with unity.

Nuclear corrections to the e-n/e-p ratio from the Jeschonnek model.

Q^2	$f_{nuclear}$
1	0.999796
2	0.999714
3	0.999655
4	0.999624
5	0.999619

- For Q² < 1 (GeV/c)², the Arenhövel model is used to determine the correction to the ratio due to nuclear effects.
- Deuteron electro-distintegration is calculated in a non-relativistic Plane-Wave Born-Approximation, using the Bonn potential.
- Model includes relativistic corrections, meson-exchange currents, isobar configurations, final-state interactions.
- The ratio $\sigma_{Full}/\sigma_{PWIA}$ is calculated for e p and e n scattering. The ratio of these two gives the correction applied to the measured e n/e p ratio.

Nuclear Corrections, $Q^2 < 1 \ (\text{GeV/c})^2$

Nuclear corrections to the e-n/e-p ratio from the Arenhövel model.

Q^2	$f_{nuclear}$
0.5	0.977
0.75	0.983
1.0	0.989
1.2	0.993

The corrected n/p ratio:

 $R_{corrected}(Q^2) = f_{nuclear}(Q^2) f_{radiative}(Q^2) f_{fermi}(Q^2) R_{observed}(Q^2)$

is related to G_M^n through:

$$R_{corrected} = \frac{\sigma_{mott}^{n} \left(G_{E,n}^{2} + \frac{\tau_{n}}{\epsilon_{n}}G_{M,n}^{2}\right) \left(\frac{1}{1+\tau_{n}}\right)}{\sigma_{mott}^{p} \left(G_{E,p}^{2} + \frac{\tau_{p}}{\epsilon_{p}}G_{M,p}^{2}\right) \left(\frac{1}{1+\tau_{p}}\right)}$$

$$G_M^n = \sqrt{\left[R_{corrected}\left(\frac{\sigma_{mott}^p}{\sigma_{mott}^n}\right)\left(\frac{1+\tau_n}{1+\tau_p}\right)\left(G_{E,p}^2 + \frac{\tau_p}{\epsilon_p}G_{M,p}^2\right) - G_{E,n}^2\right]\frac{\epsilon_n}{\tau_n}}$$

 G_M^n results

For the purpose of evaluating systematic errors, we make the approximation:

$$G_M^n = \sqrt{(\sigma_p R_c - G_{E,n}^2)\frac{\epsilon}{\tau}}$$

The standard propagation of errors formula is applied:

$$(\delta G_M^n)^2 = \left(\frac{\partial G_M^n}{\partial \sigma_p}\right)^2 (\delta \sigma_p)^2 + \left(\frac{\partial G_M^n}{\partial G_E^n}\right)^2 (\delta G_E^n)^2 + \sum_i \left(\frac{\partial G_M^n}{\partial f_i}\right)^2 (\delta f_i)^2.$$

The estimated systematic error on G_M^n due to uncertainties in the reduced proton cross-section, for the 4.2 GeV data.

The difference between the Kelly and Bosted parametrizations of σ_p . This is used along with:

$$\frac{\partial G_M^n}{\partial \sigma_p} = \frac{1}{2} \frac{1}{G_M^n} R_c \frac{\epsilon}{\tau}$$

to evaluate the estimated systematic error.

The estimated systematic error on G_M^n due to uncertainties in G_E^n , for the 4.2 GeV data.

The difference between the Galster fit and Lomon parametrizations of G_E^n . This is used along with:

$$\frac{\partial G_M^n}{\partial G_E^n} = \frac{G_E^n}{G_M^n} \frac{\epsilon}{\tau}$$

to evaluate the estimated systematic error.

The standard fit to the EC neutron detection efficency, and the perturbed fit. The difference between the fits is used along with:

$$(\frac{\delta G_M^n}{G_M^n})^2 = (\frac{\sigma_p \epsilon}{2\mu_n^2 G_D^2 \tau})^2 (\delta R_c)^2$$

to evaluate the estimated systematic error.

The estimated systematic error on G_M^n due to uncertainties in the EC neutron detection efficiency parametrization, for the 2.5 GeV data.

Other sources of systematic error considered were:

- Accidental background in neutron detection efficiency measurement
- Location of missing mass cut in neutron selection
- Location of ΔR cut in EC neutron selection
- Proton detection efficiency
- Sensitivity of Fermi-correction to deuteron momentum distribution
- Location of θ_{pq} cut
- Radiative/Nuclear corrections

Each of these contributed at the sub-1% level.

The combined systematic error for the 4.2 GeV data, with EC neutron detection.

Combined G_M^n and systematic error

The four separate G_M^n measurements were combined by minimizing:

$$\chi^{2} = \sum_{j} \frac{(x_{j} - \overline{x})^{2}}{\sigma_{j}^{2}}$$
$$\sum_{j} \frac{x_{j}}{\sigma_{j}^{2}}$$

$$\overline{x} = \frac{\sum_{j} \frac{\overline{\sigma_j^2}}{\sigma_j^2}}{\sum_{j} \frac{1}{\sigma_j^2}}$$

The statistical error on each point was found from:

$$\sigma_{\overline{x}}^2 = \sum_j (\frac{\partial \overline{x}}{\partial x_j})^2 \sigma_j^2$$
$$= \frac{1}{\sum_j \frac{1}{\sigma_j^2}}$$

The systematic errors were combined using the same weighting as the G_M^n values.

Selected World Data

 G_M^n results

Conclusions

- The neutron magnetic form factor has been measured over a wide range of Q^2 at the CLAS detector
- The standard dipole parametrization was found to give a good representation of the data in the region $1.0 < Q^2 < 3.5$ (GeV/c)².
- The current measurement disagrees with other recent measurements in the region $Q^2 < 1$ (GeV/c)². Resolving this discrepancy provides motivation to complete the analysis of the e5 reversed-field data.
- The data may show G_M^n falling off faster than the dipole for $Q^2 > 3.5$ (GeV/c)². A second round of the e5 experiment, using a 6 GeV beam energy would allow the extension of the G_M^n measurement to $Q^2 \approx 7$ (GeV/c)². This would allow a resolution of this ambiguity at high Q^2 , and allow us to extend the CLAS measurement into a region where no reliable data exisit.
- Theoretical models that are not tightly constrained by fits to previous data are unable to reproduce the results of this mesurement over the full Q^2 range.

Conclusions

An analysis note is being reviewed by a committee from the CLAS Deep Processes working group, and a draft PRL note is being prepared. Once all the needed approvals are obtained, the $Q^2 > 1$ (GeV/c)² data will be submitted for publication.