Parity Violating Electron Scattering: Recent Results and Future Prospects

(Expanded version of CIPANP06 Plenary Talk)

Krishna Kumar

University of Massachusetts, Amherst

Acknowledgement: E158 and HAPPEX Collaborations, J. Erler, C. Horowitz, W.J. Marciano, M.J. Ramsey-Musolf, K. Paschke, J. Piekerewicz, M. Pitt, P. Souder

> June 12, 2006 Jefferson Lab Users Meeting

Weak Neutral Current (WNC) Interactions

Low energy WNC interactions ($Q^2 << M_Z^2$)

Historical Context:

- 1960s: An Electroweak Model of Leptons (and quarks)
 - $SU(2)_L \times U(1)_y$ gauge theory predicted the Z boson
- 1973: antineutrino-electron scattering
 - First weak neutral current observation
 - ·Gargamelle observes one ν_{μ} e^ event ·First measurement of weak mixing angle

e. A

 $g.G_F$

- Mid-70s: Does the Weak Neutral Current interfere with the Electromagnetic Current?
 - Central to establishing $SU(2)_L \times U(1)_y$

Parity is conserved

Consider fixed target electron scattering

 $(e)_r$

Parity is violated

12 June 2006

Parity-Violating (PV) Electron Scattering

 $-A_{\rm LR} = A_{\rm PV} = \frac{\sigma_{\downarrow} - \sigma_{\downarrow}}{\sigma_{\downarrow} + \sigma_{\downarrow}} \sim \frac{A_{\rm weak}}{A_{\rm w}} \sim \frac{G_F Q^2}{4 \pi \alpha} g$

 $\sigma \alpha |A_{v} + A_{wak}|^{2} \sim |A_{EM}|^{2} + 2A_{EM}A_{weak}^{*} + ...$

- unpolarized target
- $\begin{array}{c} \boldsymbol{g} = \boldsymbol{g}_{A} \boldsymbol{e} \boldsymbol{g}_{V} \boldsymbol{f} + \boldsymbol{\beta} \boldsymbol{g}_{V} \boldsymbol{e} \boldsymbol{g}_{A} \boldsymbol{f} \\ \boldsymbol{\rho}_{V} \sim 10^{-5} \cdot \boldsymbol{Q}^{2} \text{ to } 10^{-4} \cdot \boldsymbol{Q}^{2} \end{array}$

- g_V and g_A are function of $\sin^2 \theta_W$ - β is a kinematic factor - Q^2 is the 4-momentum transfer - g^T affected by QCD physics

C.Y. Prescott et. al, 1978

A_{PV} in Deep Inelastic Scattering off liquid Deuterium: Q² ~ 1 (GeV)² E122 at the Stanford Linear Accelerator Center (SLAC)

20 GeV polarized electron beam on a 30 cm LD_2 target

Established experimental technique: δ(A_{PV}) < 10 ppm
 Cleanly observed weak-electromagnetic interference
 Parity Violation in Weak Neutral Current Interactions

• $sin^2 \theta_W = 0.224 \pm 0.020$: same as in neutrino scattering 12 June 2006 Parity Violating Electron Scattering: Recent Results and Future Prospects

2006: MeV to TeV Physics

Parity-violating electron scattering has become a precision tool

Combined with judicious choices of kinematics and targets:

- •Many-Body Nuclear Physics
- •Nucleon Structure Physics
- •Valence Quark Physics
- •Search for New TeV Physics

Address fundamental physics issues over a range of energy scales

Outline

- Strangeness in Nucleons
 - New Results from HAPPEX at Jefferson Lab
 - Status and Plans for further measurements
- The Neutron Skin of a Heavy Spinless Nucleus
 - A planned measurement of elastic WNC amplitude off ²⁰⁸Pb
- Low Energy Weak Mixing Angle Measurements
 - Final Result from the E158 Experiment at SLAC
 - Possible New Measurements at Jefferson Lab and an LC
- PV Deep Inelastic Scattering at JLab at 11 GeV
 - Potential of precision studies of nucleon structure at high x
- Summary

Nucleon Structure & Strangeness

QCD is intractable at low Q^2 ; what is its relationship to hadron structure?

Why don't sea quarks destroy Quark Model predictions?

Strange quarks are relatively light; What can we say about its role?

 $SU(3)_f$ symmetry-breaking introduces uncertainties

Semi-inclusive DIS (HERMES) (Needs fragmentation functions) $"\Delta s" = \int_{0.023}^{0.30} \Delta s(x) dx = +0.03 \pm 0.03 (\text{stat}) \pm 0.01 (\text{syst})$

πN scattering: Strange mass: 0-20%

What about the nucleon's charge and magnetization distributions?

Elastic Electron Scattering 101

Measure σ as a function of Q^2

Neglecting recoil and spin: **Obtain Fourier transform of QED:** precise predictions charge distribution

N

N

Nuclear charge distribution

Overview of Experiments

Status as of 2005

Over the past three years: New data from A4, G0 and HAPPEX

 $Q^2 \sim 0.1 \ GeV^2$

Add SAMPLE & HAPPEX-He
Multiple constraints at Q² ~ 0.1 GeV²
Would imply 5-10% contribution to magnetic moment from strange quarks (50-100% of isoscalar magnetic moment)

New Preliminary HAPPEX Results Helicity Window Pair Asymmetry Hydrogen circularly HWP In # Pairs = 25.3 M larizod R R R (mqq) HV Window R symmetry I L L 15 Hz Hydrogen 10² 10 A_{naw} correction ~11 ppb 35 40 20 25 30 5 15 10 Slua 0 HWP Out -4000 -3000 -2000 -1000 1000 2000 3000 Uncorrected Detected Asymmetry (ppm) (10) (wdd) HWP In Helium ٠ Hydrogen Systematic control ~ 10⁻⁸ symmetry $A_{PV} = -1.60 \pm 0.12$ (stat) ± 0.05 (syst) ppm n $A(G^{s}=0) = -1.640 \text{ ppm} \pm 0.041 \text{ ppm}$ Helium -10 *Normalization control* ~ 2% -15 normalization error ~ 2.5% $A_{PV} = +6.43 \pm 0.23$ (stat) ± 0.22 (syst) ppm 20 40 60 80 100 120 $A(G^{s}=0) = +6.37 \text{ ppm}$ Slua

Implications and Outlook

An Alternate Fit to Data $Q^2 \sim 0.1 \ GeV^2$

Probing Neutron-Rich Matter

•²⁰⁸Pb neutron skin and neutron star crusi made of similar material

At what radius does transition from liquid to non-uniform matter take place?
Mean Field theory predicts correlation between neutron star transition density and ²⁰⁸Pb neutron skin

•The proton distribution of heavy nucleus: mapped via electron scattering •The neutron distribution: probed with hadrons highly model-dependent •neutron "skin" ~ 0.1 - 0.3 fm? •Neutron density a fundamental observable: Impacts a variety of physics A powerful data-to-data relation A NEUTRON STAR: SUR 0.70 CORE: Homogeneou Matte 0.60 R -R =0.20 fm ρ Constrai

PREx at Jefferson Lab

 $\frac{\delta(A_{PV})}{Q^{P}_{EM}} \sim \frac{3\%}{Q^{P}_{EM}} \sim \frac{3\%}{Q^{P}_{EM}}$

$$\mathbf{Q}^n{}_W \sim 1 \quad \mathbf{Q}^p{}_W \sim 1 - 4 \sin^2 \theta_W$$

A technically demanding measurement:

•Rate ~ 2 GHz

- Separate excited state at 2.6 MeV
- •Stat. Error ~ 15 ppb

Tentatively scheduled to run in 2008

Constrain neutron halo for Atomic Parity Violation Expts

- •Tight control of beam properties
- •New "warm" septum
- •High power Lead target
- •New 18-bit ADC
- •New radiation-hard detector
- •Polarimetry upgrade

12 June 2006

Beyond Standard Model @ Low Q²

•World electroweak data has marginal χ^2 , but no discernable pattern •Data used to put limits on energy scale of new physics effects

Parity-conserving contact interactions probed at 10-20 TeV level
Parity-violating contact interactions probed at few TeV level

The SLAC E158 Experiment

-Violating Left-Right Asymmetry In Fixed Target Møller Scatt

Goal: error small enough to probe TeV scale physics

E158 Collaboration		
	8	
•SLAC		
•Smith		
•Syracuse		
•UMass		
•Virginia		
	•SLAC •Smith •Syracuse •UMass •Virginia	

8 Ph.D. Students 60 physicists

2001: Engineering run 2002-2003: Physics runs 2004: First PRL 2005: Final result

Shd of the SIA 58 iMeriange Resortin

Weak Mixing Angle at HIGH Q²

•Tevatron & LHC will make some improvements on M_W •sin² θ_W improvements at hadron colliders very challenging •Must wait for "Giga-Z" option of ILC or Neutrino Factory

Future Possibilities (Purely Leptonic) v-e in reactor can test neutrino coupling: $\sin^2 \theta_w$ to ± 0.002 Møller at 11 GeV at Jlab $sin^2 \theta_W to \pm 0.00025!$ e.g. Z' reach Higher luminosity and acceptance ~ 2.5 TeV $\Lambda_{oo} \sim 25 \ TeV \ reach!$ •Comparable to single Z pole measurement: shed light on disagreement •Best low energy measurement until ILC or v-Factorv Kurylov, Ramsey-Musolf, Su •Could be launched ~ 2012 0.15 RPV SUSY JLab e2e @ 12 GeV 0.1 A^{0,1} $(Q^p_W)_{SUSY}/(Q^p_W)_{SM}$ RPC 0.23099 ± 0.00053 SUSY 0.05 A(P_) 0.23159 ± 0.00041 A(SLD) 0 A^{0,b} 0.23221 ± 0.00029 95% C.L. 0.05 A^{0,c} JLab 12 GeV 0.23220 ± 0.00081 0.1 Møller 0.2324 ± 0.0012 δ (Q_W)_{SUSY}/(Q_W^e)_{SM} 0.05 0.2 0.15 0.1

Does Supersymmetry (SUSY) provide a candidate for dark matter?
Neutralino is stable if baryon (B) and lepton (L) numbers are conserved
B and L need not be conserved (RPV): neutralino decay

Ultrahigh Precision at ILC

Measure contribution from scalars to oblique corrections

A_{LR} and M_W at future colliders: Systematics extremely challenging! Energy scale to 10⁻⁴, polarimetry to 0.15%

Møller scattering at the ILC

 $\implies Figure of Merit rises$ $linearly with E_{lab}$

Fixed target has advantages for systematics
Could work with ILC "exhaust"beam

K.K, Snowmass 96	E158	LC
Energy (GeV)	48	250-500
Intensity/pulse	4.5 × 10 ¹¹	14 × 10 ¹¹
Pulse Rate (Hz)	120	120
P _e	85%	90%
Time (s)	4 × 10 ⁶	2 × 10 ⁷
A _{LR} (ppm)	0.15	1-2
δA_{LR} (ppm)	0.015	0.008
δ sin²(θ_w)	0.001	0.00008

12 June 2006 Parity Violating Electron Scattering: Recent Results and Future Prospects

Future Measurements (Semi-leptonic)

C_{2i}'s small & poorly known: difficult to measure in elastic scattering
PV Deep inelastic scattering experiment with high luminosity 11 GeV beam

For an isoscalar target like ²H, structure functions largely cancel in the ratio:

$$a(x) = \frac{3}{10} \left[(2C_{1u} - C_{1d}) \right] + \cdots$$
$$b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$$

 $(Q^2 >> 1 \ GeV^2, W^2 >> 4 \ GeV^2, x \sim 0.3-0.5)$

Must measure A_{PV} to 0.5% fractional accuracy!
Luminosity and beam quality available at JLab

•6 GeV experiment launches PV DIS measurements at JLab

·11 GeV experiment requires tight control of normalization errors
 ·Important constraint should LHC see anomaly

•Need to characterize nucleon structure at high-x to high precision

Precision High-x Physics with PV DIS

Charge Symmetry Violation (CSV) at High x: clean observation possible?

A Vision for Precision PV DIS Physics

- Hydrogen and Deuterium targets
- Better than 2% errors
 - It is unlikely that any effects are larger than 10%

CW 90 μA at 11 GeV
40 cm liquid H₂ and D₂ targets
Luminosity > 10³⁸/cm²/s

Goal: Form a collaboration, start real design and simulations, and make pitch to US community at the next nuclear physics long range plan (2007) 12 June 2006 Parity Violating Electron Scattering: Recent Results and Future Prospects

Summary

•New HAPPEX results on nucleon neutral weak form factors: •Helium: $G_{E}^{s} = +0.004 \pm 0.014_{(stat)} \pm 0.013_{(syst)} (Q^{2} = 0.077 \text{ GeV}^{2})$ •Hydrogen: $G_{E}^{s}+0.088G_{M}^{s} = +0.004\pm0.011_{(stat)}\pm0.005_{(syst)}\pm0.004_{(FF)}$ •Final measurements to be completed within two years

•A clean measurement of the neutron's skin in ²⁰⁸Pb: implications for neutron star formation and properties

E158 has carried out a precision measurement of sin²θ_w
A_{PV}: -131 ± 14 ± 10 ppb
Running of weak mixing angle established at 6σ
sin²θ_{eff} = 0.2397 ± 0.0010 ± 0.0008
New constraints on TeV scale physics
Future experiments could improve sensitivity by ~ 2 to 6
An "ultimate" measurement could be done at an LC

•New era of PV DIS measurements with JLab 12 GeV upgrade

Search for CSV in PV DIS

 $u^{p}(x) = d^{n}(x)$? $d^{p}(x) = u^{n}(x)$? •u-d mass difference •electromagnetic effects

Direct observation of parton-level CSV would be very exciting!
Important implications for high energy collider pdfs
Could explain significant portion of the NuTeV anomaly

For
$$A_{PV}$$
 in electron-²H DIS $\frac{\delta A_{PV}(x)}{\dot{A}_{PV}(x)} = 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$

 $\delta u(x) = u^p(x) - d^n(x)$

 $\delta d(x) = d^p(x) - u^n(x)$

Sensitivity will be further enhanced if u+d falls off more rapidly than $\delta u-\delta d$ as $x \to 1$

Strategy:

•measure or constrain higher twist effects at $x \sim 0.5$ -0.6 •precision measurement of A_{PV} at $x \sim 0.7$ to search for CSV

d(x)/u(x) as $x \rightarrow 1$

Proton Wavefunction (Spin and Flavor Symmetric)

$$|p^{\uparrow}\rangle + \frac{1}{\sqrt{2}}|u^{\uparrow}(ud)_{S=0} + \frac{1}{\sqrt{18}}|u^{\uparrow}(ud)_{S=1} - \frac{1}{3}|u^{\downarrow}(ud)_{S=1}\rangle$$

$$= \frac{1}{3}|d^{\uparrow}(uu)_{S=1} - \frac{1}{2}|d^{\downarrow}(uu)_{S=1}\rangle$$

$$= \frac{1}{3}|d^{\uparrow}(uu)_{S=1} - \frac{1}{2}|d^{\downarrow}(uu)_{S=1}\rangle$$

$$= \frac{1}{3}|u^{\downarrow}(ud)_{S=1}\rangle$$

$$= \frac{1}{3}|u$$

0

0.6

0.8

•Vector quark current! (electron is axial-vector)

12 June 2006 Parity Violating Electron Scattering: Recei

PV DIS and Nucleon Structure

- Analysis assumed control of QCD uncertainties
 - Higher twist effects
 - Charge Symmetry Violation (CSV)
 - d/u at high x
- NuTeV provides perspective
 - Result is 3σ from theory prediction
 - Generated a lively theoretical debate
 - Raised very interesting nucleon structure issues: cannot be addressed by NuTeV
- JLab at 11 GeV offers new opportunities
 - PV DIS can address issues directly
 - Luminosity and kinematic coverage
 - Outstanding opportunities for new discoveries
 - Provide confidence in electroweak measurement

E158 Analysis

12 June 2006

Physics Runs

Raw Asymmetry Statistics

Final Analysis of All 3 Runs

Electroweak Physics

Backgrounds & Normalization

Integrating calorimeter:

background dilutions and asymmetries must be separately measured or bounded.

- •Elastic and inelastic e-p scattering and radiative tail
- ·High energy pions
- ·High and low energy photons
- •Neutrons
- •Synchrotron radiation

Total dilution: 9.3% in Run I, 7.6% in Run II & II

Beam polarization measured using polarized foil target

- Same spectrometer used with dedicated movable detector • Energy scale and spectrometer alignment to determine <Q² > • Linearity of PMTs

Largest systematic errors:
•Inelastic ep: -22 ± 4 ppb
•Beam polarization: 0.89 ± 0.04

Summary of Corrections

Correction	f _{bkg}	$\sigma(f_{bkg})$	A _{corr} (ppb)	$\sigma(A_{corr})$ (ppb)
Beam first order	-	-	-10	1
Beam higher orders	-	-	0	3
Beam spotsize	-	-	0	1
Transverse asymmetry	-	-	-4	2
High energy photons	0.004	0.002	3	3
Synchrotron photons	0.002	0.001	0	1
Neutrons	0.003	0.001	-1	1
ep elastic	0.056	0.007	-7	1
ep inelastic	0.009	0.001	-22	4
Pions	0.001	0.001	1	1
TOTAL	0.075	0.008	-40	6

• Scale factors:

- Average Polarization 89 ± 4% ⇔ New "NLC" cathode !
- Linearity $99 \pm 1\%$
- Radiative corrections: 1.01 ± 0.01

rospects

"ep" Detector Data

Radiative tail of elastic ep scattering is dominant background
8% under Moller peak

- Additional 1% from inelastic e-p scattering
- •Coupling is large: similar to 3 incoherent quarks: 0.8 x 10^{-4} x Q^2
- •Background reduced in Run II & III with additional collimation

Transverse Asymmetry

Form Factors

$$J_{\mu}^{EM} = \sum_{q} Q_{q} \left\langle \overline{N} \left| \overline{u}_{q} \gamma_{\mu} u_{q} \right| N \right\rangle = \overline{N} \left[\gamma_{\mu} F_{1}^{\gamma} + \frac{i \sigma_{\mu\nu} q^{\nu}}{2M_{N}} F_{2}^{\gamma} \right] N$$

Adopt the Sachs FF: $G_E^{\gamma} = F_1^{\gamma} + \tau F_2^{\gamma}$ $G_M^{\gamma} = F_1^{\gamma} + F_2^{\gamma}$ (Roughly: Fourier transforms of charge and magnetization)

NC probes same hadronic flavor structure, with different couplings:

$$G_{E/M}^{\gamma} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} G_{E/M}^{d} - \frac{1}{3} G_{E/M}^{s}$$
$$G_{E/M}^{Z} = \left(1 - \frac{8}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{u} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d}$$

 $G^{Z}_{E/M}$ provide an important new benchmark for testing non-perturbative QCD structure of the nucleon

Charge Symmetry

One expects the neutron to be an isospin rotation of the proton*:

$$G_{E/M}^{p,u} = G_{E/M}^{n,d}, \quad G_{E/M}^{p,d} = G_{E/M}^{n,u}, \quad G_{E/M}^{p,s} = G_{E/M}^{n,s}$$

*See B. Kubis & R. Lewis nucl-th/0605006 & Randy Lewis' talk at this meeting 12 June 2006 Parity Violating Electron Scattering: Recent Results and Future Prospects

Beam Position Corrections, Helium

Beam Position Corrections, Hydrogen

Compton Polarimetry

Miscellany

Backgrounds:

Dilutions: 2.2% (⁴He) 0.8% (¹H) **Systematic** 60 ppb (⁴He) 16 ppb (¹H)

 Q^2 & effective kinematics: $Q^2 < 1.0\%$

Bryan Moffit's talk

Bryan Mof stalk

- *Two-photon exchange corrections:* small Marc Vanderhaeghan's talk
- Transverse asymmetry: ٠ measured directly in dedicated runs, cancels in left-right sum; Systematic: 4 ppb (^{1}H) 8 ppb (^{4}He)

(no explicit correction made)

Lisa Kaufmann's talk

- **Electromagnetic Form Factors:** use Friedrich & Walcher parameterization, Eur. Phys. J. ٠ A, 17, 607 (2003), and BLAST data for G_E^n
- Axial Form Factor: highly suppressed for ¹H (not present for ⁴He) ٠
- Vector Electroweak Radiative Corrections: Particle Data Group ٠
- **Blinded Analysis**

⁴He: Nuclear Effects

O⁺ **O**⁺ **T=0** transition

- Any one-body electroweak operator O: (eg Fetter and Walecka) <J,T|O|J,T> = J,T(, ') < '|O| > | > = complete setone-body density matrix element (nuclear structure) single-part le matrix element (nucleon structure)
- Asymmetry involves ratio of weak/EM matrix elements (G_E^s and G_E^{T=0}); Single term in J,T in transition; O same in weak and EM except for couplings same one-body density matrix elements in numerator/denominator nuclear structure cancels, only nucleon form factors remain

This result is EXACT, *if* :

- ⁴He g.s. pure isospin state: Ramavataram, Hadjimichael, Donnelly PRC 50(1994)1174
- No D-state admixture: Musolf & Donnelly PL B318(1993)263
- Meson exchange corrections small: Musolf, Schiavilla, Donnelly PRC 50(1994)2173
- Nuclear effects all << 1%, no explicit correction made.

HAPPEx

Error Budget-Helium

2005

2004

False Asymmetries	48 ppb
Polarization	192 ppb
Linearity	58 ppb
Radiative Corrections	6 ppb
Q ² Uncertainty	58 ppb
Al background	32 ppb
Helium quasi-elastic	24 ppb
Total	216 ppb

False Asymmetries	103 ppb
Polarization	115 ppb
Linearity	78 ppb
Radiative Corrections	7 ppb
Q ² Uncertainty	66 ppb
Al background	14 ppb
Helium quasi-elastic	86 ppb
Total	205 ppb

Error Budget-Hydrogen 2004

2005

False Asymmetries	17 ppb
Polarization	37 ppb
Linearity	15 ppb
Radiative Corrections	3 ppb
Q ² Uncertainty	16 ppb
Al background	15 ppb
Rescattering Background	4 ppb
Total	49 ppb

False Asymmetries	43 ppb
Polarization	23 ppb
Linearity	15 ppb
Radiative Corrections	7 ppb
Q ² Uncertainty	12 ppb
Al background	16 ppb
Rescattering Background	32 ppb
Total	63 ppb

HAPPEX-II 2005 Preliminary Results

HAPPEX-⁴He:

 $Q^2 = 0.0772 \pm 0.0007 (\text{GeV/c})^2$ $A_{PV} = +6.43 \pm 0.23 \text{ (stat)} \pm 0.22 \text{ (syst) ppm}$

 $A(G^{s}=0) = +6.37 \text{ ppm}$ $G^{s}_{E} = 0.004 \pm 0.014_{(stat)} \pm 0.013_{(syst)}$

HAPPEX-H: $Q^2 = 0.1089 \pm 0.0011 (GeV/c)^2$ $A_{PV} = -1.60 \pm 0.12 (stat) \pm 0.05 (syst) ppm$

A(G^s=0) = -1.640 ppm ± 0.041 ppm

 G_{E}^{s} + 0.088 G_{M}^{s} = 0.004 ± 0.011_(stat) ± 0.005_(syst) ± 0.004_(FF)

EM Form Factors

Electromagnetic form factors parameterized as by: Friedrich and Walcher, Eur. Phys. J. A, **17**, 607 (2003)

Background

Dedicated runs at very low current using track reconstruction of the HRS

Total systematic uncertainty contribution ~40 ppb (Helium), ~15ppb (Hydrogen)

Determining Q²

Asymmetry explicitly depends on Q²:

$$A_{PV} = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left\{ \left(1 - 4\sin^2\theta_W\right) - \frac{\varepsilon G_E^p (G_E^n + G_E^s) + \tau G_M^p (G_M^n + G_M^s)}{\varepsilon (G_E^p)^2 + \tau (G_M^p)^2} \right\}$$

$$Q^2 = 2EE'(1 - \cos\theta)$$

Goal:
$$\delta_{Q^2} < 1\%$$

Q² measured using standard HRS tracking package, with reduced beam current

- Central scattering angle must be measured to $\delta\theta<$ 0.5%
- Asymmetry distribution must be averaged over finite acceptance

A Simple Fit (for a simple point)

Simple fit:

٠

GEs = r_s*τ
GMs = mu_s
Includes only data Q² < 0.3 GeV²
Includes SAMPLE constrainted with G_A theory and HAPPEX-He 2004, 2005
GO Global error allowed to float with unit constraint
Nothing intelligent done with form factors, correlated errors, etc.

- Quantitative values should NOT be taken very seriously, but some clear, basic points:
 - The world data are consistent.
 - Rapid Q² dependence of strange form-factors is not required.
 - Sizeable contributions at higher Q2 are not definitively ruled out. (To be tested by HAPPEX-III, G0 and A4 backangle.)