Precision Measurement of The Pion Form Factor

Tanja Horn Jefferson Lab/ University of Maryland Users Group Workshop and Annual Meeting June 14, 2006

- Pion Form Factor via Pion Electroproduction
- Precision Measurements in Hall C JLab
- Results (F_{π} -2)

Hadronic Form Factors in QCD

- Fundamental issue: quantitative description of hadrons in terms of underlying constituents
 - Theory: Quantum Chromo-Dynamics (QCD) describes strong interactions
 - Degrees of freedom: quarks and gluons

- Studies of short/long distance scales:
 - Theory QCD framework, GPD's, lattice, models
 - Experiments form factors, neutral weak nucleon structure

Pion Electromagnetic Form Factor F_π(Q²) and pQCD

- Good observable for studies of hadronic structure
 - Simple valence structure, qq
 - "Hydrogen atom" of QCD
- High Q² scaling predicted by Farrar-Jackson (*PRL* 43 (1979) 246)

$$F_{\pi} \rightarrow 8\pi \frac{\alpha_s f^2 \pi}{Q^2}$$

 f_{π}^{2} =133 MeV is the $\pi + \rightarrow \mu + \nu$ decay constant

 $Q^2 F_{\pi} (GeV/c)^2$ X Amendolia π+e elastics Previous $p(e.e'\pi^{+})n$ 0.6 ■ JLab F₋-1 Results (Volmer) Monopole (A_2=0.54) 0.4 0.2 Perturbative QCD Ω 1 2 3 4 5 Ω $Q^2 (GeV/c)^2$

• Small Q²: vector meson dominance gives reasonable description with normalization $F_{\pi}(0)=1$ by charge conservation

Summary F_π Calculations

- Limits on F_{π} well defined and many model calculations available for transition region
- Key Point: Know there is asymptotic limit, but how to get there and what governs transition?

 Need experimental data to study behavior of QCD in transition from long distance to short distance scales

F_{π} via Pion Electroproduction

- F_π can be measured directly from π+e scattering (S.R. Amendolia et al., NP B277 (1986)) up to Q²~0.3 GeV²
- No "free pion" target to extend measurement of F_π to larger Q² values use "virtual pion cloud" of the proton
- Method check Extracted results are in good agreement with π+e data

- S.R. Amendolia et al., Nucl. Phys. B277 (1986)
- P. Brauel, et al., Z. Phys. C3 (1979) 101.
- J. Volmer et al PRL 86 (2001)

Extracting F $_{\pi}$ from Pion **Electroproduction Data**

In t-pole approximation:

 In the analysis F_π is <u>extracted</u> from σ_L data using a model incorporating pion electroproduction (VGL/Regge)

Precision F $_{\pi}$ data up to Q²=2.45 GeV² (F $_{\pi}$ -2)

- Extension of F_π-1 at highest possible value of Q² with 6 GeV beam at JLab
 - New data at higher W
 - Repeat Q²=1.60 GeV² closer to t=m_π
- Successfully completed in Hall C at JLab 2003
 - Coincidence measurement: HMS detects pions, SOS detects electrons
 - Pion electroproduction from H and ²H
 - Extracted $\sigma_L \sigma_L$, σ_T , σ_{TT} , and σ_{LT} at W=2.22 GeV

Ехр	Q² (GeV²)	W (GeV)	t (Gev)²	E _e (GeV)
F _π -1	0.6- <mark>1.6</mark>	1.95	0.03 <mark>-0.150</mark>	2.445-4.045
F _π -2	<mark>1.6</mark> ,2.45	2.22	<mark>0.093</mark> ,0.189	3.779-5.246

Good Event Selection

- Coincidence measurement between charged pions in HMS and electrons in SOS
 - Coincidence time resolution ~200-230 ps
 - Cut: ± 1ns
- Protons in HMS rejected using coincidence time and Aerogel Cerenkov
- Electrons in SOS identified by gas Cerenkov /Calorimeter
- Exclusive neutron final state selected with missing mass cut: 0.92 < MM < 0.98 GeV

F_π-2 Kinematic Coverage

- Have full coverage in φ BUT acceptance not uniform
- Measure σ_{TT} and σ_{LT} by taking data at three angles: $\theta_{\pi q}=0^{\circ}$, +4°, -3°

- W/Q² phase space covered at low and high ε is different
- For L-T separation use cuts to define common W/Q² phase space

F_π-2 Data Analysis

 $2\epsilon(\epsilon+1)$

- Compare experimental yields to Monte Carlo of the experiment
 - Model for H(e,e'π⁺) based on pion electroproduction data
 - Radiative effects, pion decay, energy loss, multiple scattering
 - COSY model for spectrometer optics

• Extract σ_L by simultaneous fit using measured azimuthal angle (ϕ_{π}) and knowledge of photon polarization (ϵ).

<u>d</u>σ_τ

dσ_{LT} cosφ

Comparison to VGL/Regge Model

- Pion electroproduction in terms of exchange of π and ρ like particles (Vanderhaeghen, Guidal, Laget, PRC 57 (1998) 1454)
 - Model parameters fixed from pion photoproduction
 - Free parameters: F_{π} , F_{ρ}
 - ρ exchange does not significantly influence σ_L at small –t

Fit to σ_L to model gives F_{π} at each Q^2

Λ_{π}^2 =0.513, 0.491 GeV², Λ_{ρ}^2 =1.7 GeV²

- Points include 1.0(0.6)% point-to-point systematic uncertainty (dominated by acceptance)
- 3.5 % normalization (correlated) uncertainty (radiative corrections, pion absorption, pion decay, kinematic uncertainties)
- 1.8(1.9)% "t-correlated" uncertainties, influence t-dependence at fixed ε

F_π-2 Results

- Data point at Q²=1.60 GeV² to check model dependence of F_{π} extraction
 - Agreement between F_π-1 (W=1.95 GeV) / F_π-2 (W=2.22 GeV) to ~5%
 - Note: new point is closer to the pion pole by ~40%
- JLab F_{π} data below monopole form, Λ^2_{π} =0.54 GeV²
 - Indicates relative contribution of hard/soft physics at moderate Q²

Hard and Soft Contributions

Lett. B115 (1982) 410

$$F_{\pi}^{hard} = \frac{\mathbf{a}_{s}}{\pi} \frac{1}{(1 + Q^{2}/2s_{0})}$$

Compare F_π Models

- Variety of models on the market – how do we know which one is "right"?
- F_π-2 result in a region of Q² where calculations start to diverge
 - BUT cannot rule out any calculations yet
- Still far from pQCD prediction

- V.A. Nesterenko and A.V. Radyushkin, Phys. Lett. B115 (1982) 410
- P. Maris and P. Tandy Phys Rev C61 (2000)
- C.-W. Hwang, Phys Rev D64 (2001)

F_{π} Time-like and Space-like

- Expect same asymptotic prediction for both spacelike and time-like data
 - The way one gets there may be different
- Calculations in time-like region complicated by explicit resonances

Timelike data from P.K. Zweber Ph.D. thesis (2006)

F_{π} at 12 GeV

- Significant progress on theoretical front expected in next 5 years – Lattice, GPD etc.
- Experiments need higher energy electron beam to reach the kinematic region where pQCD expectation may be approached
- SHMS+HMS in Hall C will allow F_π to be measured up to Q²~6 GeV² – 12 GeV proposal

• Small forward angle crucial for F_{π} experiment since need to reach low –t values.

- F_{π} good observable to study transition region to perturbative QCD
 - Contribution of soft and hard physics
- F_{π} -2 results up to Q^2 = 2.45 GeV²
 - Data will constrain models describing the treatment of nonperturbative physics at higher Q²
 - Still far from pQCD prediction
 - Good agreement with data point at Q²=1.60 GeV² gives confidence in reliability of extraction method
- Studies of F_{π} at higher electron beam energy will allow us to reach the kinematic range where pQCD expectation may be approached
 - Measurement at JLab with 11GeV beam up to Q²~6 GeV²

JLab F_{π} -2 Collaboration

R. Ent, D. Gaskell, M.K. Jones, D. Mack, D. Meekins, J. Roche, G. Smith, W. Vulcan, G. Warren, S. Wood Jefferson Lab, Newport News, VA, USA

E. Brash, G.M. Huber, V. Kovaltchouk, G.J. Lolos, S. Vidakovic, C. Xu University of Regina, Regina, SK, Canada

> H. Blok, V. Tvaskis Vrije Universiteit, Amsterdam, Netherlands

E. Beise, H. Breuer, C.C. Chang, T. Horn, P. King, J. Liu, P.G. Roos University of Maryland, College Park, MD, USA

> W. Boeglin, P. Markowitz, J. Reinhold Florida International University, FL, USA

J. Arrington, R. Holt, D. Potterveld, P. Reimer, X. Zheng Argonne National Laboratory, Argonne, IL, USA

> H. Mkrtchyan, V. Tadevosyan Yerevan Physics Institute, Yerevan, Armenia

> S. Jin, W. Kim Kyungook National University, Taegu, Korea

M.E. Christy, L.G. Tang Hampton University, Hampton, VA, USA

> J. Volmer DESY, Hamburg, Germany

T. Miyoshi, Y. Okayasu, A. Matsumura Tohuku University, Sendai, Japan

B. Barrett, A. Sarty Saint Mary's University, Halifax, NS Canada

K. Aniol, D. Margaziotis California State University, Los Angeles, CA, USA

L. Pentchev, C. Perdrisat College of William and Mary, Williamsburg, VA, USA

I. Niculescu James Madison University, Harrisonburg, VA, USA

V. Punjabi Norfolk State University, Norfolk, VA, USA

E. Gibson California State University, Sacramento, CA, USA

Comparison to VGL – p trajectory

- Influence of ρ cutoff on cross sections vary Λ_{ρ} between 1.1 and 5 GeV²
 - σ_T, σ_{TT} systematically underpredicted
 - Little influence on σ_L

Q2 (GeV/c) ²	t (Gev/c) ²	ρ exchange effect
1.60	0.06-0.21	0.5-1.0%
2.45	0.11-0.37	0.5-3.0%

 Λ_{π}^2 =0.513, 0.491 GeV²

F_{π} -2 Uncertainties

- Uncertainty in separated cross sections has both statistical and systematic sources
- Statistical uncertainty in ranges between 1 and 2%

Source	Pt-Pt	Scale	t-correlated
Acceptance	1.0(0.6)%	1.0%	0.6%
Radiative Corrections	0.1%	2.0%	0.4%
Pion Absorption	-	2.0%	0.1%
Pion Decay	0.03%	1.0%	-
Model Dependence	0.2%	-	1.1(1.3)%
Kinematics	0.2%	-	1.0%
HMS Tracking	0.1%	1.0%	0.4%
Charge	-	0.5%	0.3%
Target Thickness	-	0.8%	0.2%
Detection Efficiency	-	0.5%	0.3%

- Point-to-point errors amplified by 1/Δε in L-T separation
- Scale errors propagate directly into separated cross section
- Uncertainties in spectrometer quantities parameterized using over-constrained ¹H(e,e'p) reaction
 - Beam energy and momenta to <0.1%
 - Spectrometer angles to ~0.5mrad
- Spectrometer acceptance verified by comparing e-p elastic scattering data to global parameterization
 - Agreement better than 2%

"Simple" Longitudinal-Transverse Separation

$$\varepsilon = \left(1 + 2\left(1 + \frac{w^2}{Q^2}\right) \tan^2\left(\frac{\theta}{2}\right)\right)^{-1}$$

• For uniform φ -acceptance, σ_{TT} , $\sigma_{LT} \rightarrow 0$ when integrated over φ

- Determine $\sigma_T^{}\!\!+\!\,\epsilon\,\sigma_L^{}$ for high and low ϵ in each t-bin for each Q^2
- Isolate σ_L, by varying photon polarization, ε

$$\frac{d^{2}\sigma}{dt\,d\phi} = \frac{d\sigma_{\tau}}{dt\,d\phi} + \epsilon \,\frac{d\sigma_{\iota}}{dt\,d\phi} + \sqrt{2\epsilon(\epsilon+1)} \,\frac{d\sigma_{\iota\tau}}{dt\,d\phi} \cos\phi_{\pi} + \epsilon \frac{d\sigma_{\tau\tau}}{dt\,d\phi} \cos^{2}\phi_{\pi}$$

"Real" Cross Section Separation

- Cross Section Extraction
 - φ acceptance not uniform
 - In reality, must measure σ_{LT} and σ_{TT}
- Extract σ_L by simultaneous fit using measured azimuthal angle (φ_Π) and knowledge of photon polarization (ε)

 $\frac{d^2\sigma}{dtd\phi} = \frac{d\sigma_{\tau}}{dtd\phi} + \epsilon \frac{d\sigma_{L}}{dtd\phi} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{L\tau}}{dtd\phi} \cos\phi_{\pi} + \epsilon \frac{d\sigma_{\tau\tau}}{dtd\phi} \cos2\phi_{\pi}$

Extracting F $_{\pi}$ from σ_{L} Data

• In t-pole approximation:

$$\sigma_{_{L}} \propto \frac{-t g_{\pi NN}^2(t)}{\left(t - m_{\pi}^2\right)^2} Q^2 F_{\pi}^2(Q^2,t)$$

- Want smallest possible –t to maximize contribution from πpole to σ_L
- Need to know t-dependence of σ_{L} to extract F_{π}

In the analysis F_{π} is extracted using a model incorporating pion electroproduction (VGL/Regge)

VGL Regge Model

- Pion electroproduction in terms of exchange of π and ρ like particles (PRC 57 (1998) 1454)
 - Model parameters fixed from pion photoproduction
 - Free parameters: F_{π}
 - ρ exchange does not significantly influence σ_L at small –t

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Q2 (GeV/c) ²	† (Gev/c)²	ρ exchange effect	
1.60	0.06-0.21	0.5-1.0%	
2.45	0.11-0.37	0.5-3.0%	

Precision F $_{\pi}$ Data From JLab (F $_{\pi}$ -1)

- Ran in Hall C at JLab in 1998, thesis students: J. Volmer and K. Vansyoc
 - Measured pion electroproduction from H and ²H
 - Extracted $\sigma_L \sigma_L$, σ_T , σ_{TT} , and σ_{LT} at W=1.95 GeV, Q² = 0.6, 0.75, 1.0, 1.6 GeV²
- F_{π} was determined by comparing σ_{L} to a Regge calculation by Vanderhaeghen, Guidal, Laget (VGL, PRC **57**(1998)1454)
 - Model parameters fixed from pion photo-production, free parameters: F_{π} and F_{ρ} .

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_π at each Q^2

