Inclusive Electron Scattering from Nuclei at x>1 and High Q² with a 5.75 GeV Beam

THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY

Nadia Fomin University of Virginia

User Group Meeting, June 2006

Overview

➢ Introduction

Physics Background and Motivation

- ≻Analysis Status
- Preliminary Results

Introduction to Quasi-Elastic Scattering

Introduction to Quasi-Elastic Scattering

• At low v, the cross section is dominated by the momentum distribution of the nucleons, but as the momentum transfer increases, inelastic scattering from the nucleons begins to play a larger role.

 $(x = \frac{\mathcal{Q}}{2M_p \nu}) > 1$

QES	DIS
Intermediate Q ² values	Higher Q ² values
Scattering from a nucleon	Scattering from quarks
Y-scaling	X and ξ-scaling

Scaling -> Dependence of the cross-section on just one variable

- >Momentum distributions of nucleons inside nuclei
- Short range correlations (the NN force)

 \Rightarrow 2-Nucleon and 3-Nucleon correlations

⇒Comparison of heavy nuclei to ²H and ³He

Scaling (x, ξ , y) at large Q²

 \Rightarrow Structure Function Q² dependence

 X,ξ -scaling

$$vW_{2}(x,Q^{2}) = \frac{\frac{d^{2}\sigma}{d\Omega dv}}{\sigma_{mott}} \frac{v}{(1+\beta)} , where \qquad \beta = 2\tan^{2}(\frac{\theta}{2}) \cdot \frac{1+\frac{v^{2}}{Q^{2}}}{1+R}$$

- ➤ In the limit of $v, Q^2 \rightarrow \infty$, x is the fraction of the nucleon momentum carried by the struck quark, and the structure function in the scaling limit represents the momentum distribution of quarks inside the nucleon.
- As $Q^2 \rightarrow \infty$, $\xi \rightarrow x$, so the scaling of structure functions should also be seen in ξ , if we look in the deep inelastic region.
- It's been observed that in electron scattering from nuclei at SLAC and JLAB, the structure function vW₂, scales at the largest measured values of Q² for all values of ξ, including low ξ (DIS) and high ξ (QES).

$$\xi = \frac{2x}{\left(1 + \sqrt{1 + \frac{4M^2 x^2}{Q^2}}\right)} \quad \text{As } Q^2 \rightarrow \infty, \xi \rightarrow \boxed{x = \frac{Q^2}{2M_p v}}$$

y-scaling: From cross sections to momentum distributions

- \succ y is the momentum of the struck nucleon parallel to the momentum transfer
- ➢ F(y) is defined as ratio of the measured cross-section to the off-shell electronnucleon cross-section times a kinematic factor

- E02-019 running is completed (Nov/Dec 2004)
 E02-019 is an extension of E89-008, but with higher E (5.75 GeV) and Q².
- ≻Cryogenic Targets: H, ²H, ³He, ⁴He
- ≻Solid Targets: Be, C, Cu, Au.
- Spectrometers: HMS and SOS (mostly HMS)

Expanded Kinematic Coverage

Analysis Update

There are 4 graduate students (guided by J.Arrington and D.Gaskell)

Corrections:

- •Charge-symmetric background subtraction
- •Radiative and bin-centering corrections
- •E-loss Corrections (very small)
- •Coulomb Corrections
- •Acceptance Corrections
- •Target-Boiling Corrections

Calibrations: •Calorimeter

•Drift Chambers

•TOF

•Čerenkov

Nadia Fomin (UVA)

Jason Ceely (MIT)

Aji Daniel (Houston)

Roman Trojer (Basel)

Preliminary Results: Deuterium

Deuterium Y-scaling: Comparison to Theory

F(y)

Preliminary Results: Helium 3

Preliminary Results: Gold

Short-Range Correlations

Corrections:

•Refine/Iterate model used for bin-centering and radiative corrections

Physics:

- •Careful extractions of scaling functions and n(k)
- •Structure function Q² dependence
- •Create Ratios of Heavy/Light nuclei -> Correlations

Other possible uses for the data

- •Extracting Moments of the F₂ structure function
- •Bloom-Gilman Duality
- Medium Modifications
- •Structure Function Q² dependence and Higher Twists
- Scaling in other variables, superscaling

E02-019 Collaboration

J. Arrington (spokesperson), L. El Fassi, K. Hafidi, R. Holt, D.H. Potterveld, P.E. Reimer, E. Schulte, X. Zheng Argonne National Laboratory, Argonne, IL B. Boillat, J. Jourdan, M. Kotulla, T. Mertens, D. Rohe, G. Testa, R. Trojer Basel University, Basel, Switzerland B. Filippone (spokesperson) California Institute of Technology, Pasadena, CA C. Perdrisat College of William and Mary, Williamsburg, VA D. Dutta, H. Gao, X. Qian Duke University, Durham, NC W. Boeglin Florida International University, Miami, FL M.E. Christy, C.E. Keppel, S. Malace, E. Segbefia, L. Tang, V. Tvaskis, L. Yuan Hampton University, Hampton, VA G. Niculescu, I. Niculescu James Madison University, Harrisonburg, VA P. Bosted, A. Bruell, V. Dharmawardane, R. Ent, H. Fenker, D. Gaskell, M.K. Jones, A.F. Lung (spokesperson), D.G. Meekins, J. Roche, G. Smith, W.F. Vulcan, S.A. Wood

Jefferson Laboratory, Newport News, VA

B. Clasie, J. Seelv Massachusetts Institute of Technology, Cambridge, MA J Dunne Mississippi State University, Jackson, MS V. Punjabi Norfolk State University, Norfolk, VA A.K. Opper Ohio University, Athens, OH F Benmokhtar Rutgers University, Piscataway, NJ H. Nomura Tohoku University, Sendai, Japan M. Bukhari, A. Daniel, N. Kalantarians, Y. Okayasu, V. Rodriguez University of Houston, Houston, TX T. Horn, Fatiha Benmokhtar University of Maryland, College Park, MD D. Day (spokesperson), N. Fomin, C. Hill, R. Lindgren, P. McKee, O. Rondon, K. Slifer, S. Tajima, F. Wesselmann, J. Wright University of Virginia, Charlottesville, VA R. Asaturyan, H. Mkrtchyan, T. Navasardyan, V. Tadevosyan Yerevan Physics Institute, Armenia S. Connell, M. Dalton, C. Gray

University of the Witwatersrand, Johannesburg, South Africa