# Strangeness Production in Hall B (From a Hyperon-production-centric view)

Robert J. Feuerbach Jefferson Lab

In collaboration with:

- Daniel Carman & Avto Tkabladze (now GWU), Ohio U.
- Mac Mestayer, JLab
- Pawel Ambrozewicz, Brian A. Raue, FIU



# K Hyperon Production Mechanisms

Depend upon phenomenological calculations





# Model Comparisons

Effective Lagrangian Models

- T. Mart, C. Bennhold et al. (KAON-MAID) PRC 61, 012201 (2000)
  - S<sub>11</sub>(1650), P<sub>11</sub>(1710), P<sub>13</sub>(1720), D<sub>13</sub>(1895)
  - K\*(892), K<sub>1</sub>(1270)
- S. Janssen, J. Ryckebusch et al., PRC 65, 015201 (2001)
  - $S_{11}(1650), P_{11}(1710), P_{13}(1720), D_{13}(1895)$
  - *K*\*(892)
  - Λ\*(1800), Λ\*(1810)

Quantities such as form factors and coupling constants are free parameters in fits of the data.

- Regge Exchange Model
  - M. Guidal, J.M. Laget, and M. Vanderhaeghen

NPA **627**, 645 (1997); PRC **61**, 025204 (2000)

K and K\*(892) trajectories exchanged



# Cross Section for Electroproduction

$$\frac{d^{5}\sigma}{dE'd\Omega_{e}d\Omega_{K}^{*}} = \Gamma \frac{d^{2}\sigma_{\nu}}{d\Omega_{K}^{*}}$$

Unpolarized beam/target/recoil







Robert J. Feuerbach

# Kaon and Hyperon Identification



- Kaon identified via time-offlight (scintillators)
- Electroproduction: detect electron and kaon
- Photoproduction: detect photon (tagger), kaon, and proton
- Exclusive reaction, so use p(γ<sup>(\*)</sup>,K<sup>+</sup>) missing mass to identify the Hyperon
- Background removed under missing-mass distributions via fit to the Hyperon peaks.



### $\Lambda$ Photoproduction Differential Cross-sections

#### threshold





## $\Sigma^0$ Photoproduction Differential Cross-sections







Robert J. Feuerbach

# Angular distributions: $\Lambda$ and $\Sigma^0$ comparison





JLab Users Group Meeting

Robert J. Feuerbach

## Photo-production total cross-sections



Bradford *et al* (CLAS), PRC **73**,035202 (2006)

- Disagreement with SAPHIR total cross-sections for Λ but not for Σ<sup>0</sup>
- Features around 1.9 GeV in Λ, and 1.85 in Σ<sup>0</sup>
- Trends match Regge-model calculations at high W.



# What is needed to make an impact?

S. Janssen et al. PLB 562, 51 (2003)



- Fits to differential cross-sections and recoil polarizations (SAPHIR data) found many solutions of similar quality.
- The solutions fell into families... (see P'<sub>13</sub>, D'<sub>13</sub>)
- ... but we need observables that are sensitive to the differences.



# Sensitive observables



- Photoproduction polarization observables are sensitive to the different sets.
- "The clear differences in the asymmetries between the two subsets will require only modest statistical accuracy to distinguish experimentally."
- With CLAS, we have measurements of the <u>electoproduction-equivalent</u> to Σ now (photoproduction analysis is underway).



#### CLAS Kaon Electroproduction



Within an energy setting, the structure functions could be cross checked.



## Electroproduction Structure Functions

- Extracted interference terms from 2.5 and 4.0 GeV datasets separately and with a combined "ε-φ fit".
- Typical systematic uncertainty contributions were

| Category             | Type         | Sources                              | Avg. Size                    |
|----------------------|--------------|--------------------------------------|------------------------------|
| Event Reconstruction | scaling      | Trigger+tracking efficiency          | 1%                           |
|                      | $\Phi$ -dep  | Elec. fiducial cut $(\phi - \theta)$ | 0.6%                         |
|                      | $\Phi$ -dep. | Kaon fiducial cut $(\phi - \theta)$  | 4.1%                         |
|                      | $\Phi$ -dep. | Elec. fiducial cut $(\theta - P_e)$  | 3.6%                         |
|                      | $\Phi$ -dep. | Kaon fiducial cut $(\theta - P_K)$   | 1.9%                         |
|                      | scaling      | Electron PID efficiency              | 1.5%                         |
|                      | scaling      | Kaon PID efficiency                  | 1.0%                         |
| Yield Extraction     | stat.        | Signal templates                     | $25\% \cdot \text{stat}$     |
|                      |              | PID background subtraction           |                              |
| Acceptance, radcorr, | $\Phi$ -dep. | Model dep. of accep. calcs.          | 8.0%                         |
| & bin size           |              | Model dep. of radcorr. calcs.        |                              |
|                      |              | Model dep. of bin size corr.         |                              |
| RadCorr: theory      | scaling      | VEGAS vs. EXCLURAD                   | 3.4%                         |
| Photon flux-factor   | scaling      | From mom. and angle errors           | 3.0%                         |
| Luminosity           | scaling      | Live time corr.                      | 0.5%                         |
|                      | scaling      | Overall stability                    | 1.5%                         |
|                      | scaling      | Electron flux norm.                  | 3.0%                         |
| Total                |              |                                      | $11.6\%{+}25\%$ $\cdot$ stat |

6.0% scale





## Improvements in L/T Separations

- Currently only have two ε values from two beam energies.
- There are FIVE more data sets at different beam energies to analyze. The 3.2 and >5 GeV datasets have 3x greater statistics.
- What have we learned?
- •Rosenbluth separations are hard, especially with largeacceptance devices.
- •Prefer more than two-points to perform the separation.





#### Hyperon Structure Functions – backward angles





#### Hyperon Structure Functions – central angles





#### Hyperon Structure Functions – forward angles





Other current or recently completed Strangeness production projects

- Measurement of helicity-correlated structure function σ'<sub>LT</sub>
- Transferred and induced Hyperon polarization
- Radiative decay of the  $\Lambda(1520)$
- Line-shape of the  $\Lambda(1405)$
- Λ photo-production off of deuterium
- "Complete" measurement of the differential cross-section and polarization observables utilizing a polarized beam, frozen-spin polarized target, and selfanalyzing decay (in preparation).
- Cascade photo-production off the proton
- Φ-meson photo-production off the proton



## Conclusions

- High-quality photoproduction cross-section measurements have been published (McNabb *et al*, Bradford *et al*), surpassing the competition in coverage and statistics.
- Λ production:
  - t-channel and s-channel diagrams play a large role
  - $\sigma_L$  remains "small" from small to large angles, though  $\sigma_{LT}$  shows that it is non-zero
  - Together, the photo- and electro-production results favor calculations with non-zero coupling to the  $D_{13}(1895)$
- Σ<sup>0</sup> production:
  - s-channel diagrams are most important at low energy
  - t-channel/Reggeon exchange dominates when W>2 GeV (above the resonance region)
  - $\Box$   $\sigma_L$  and  $\sigma_{LT}$  for the  $\Sigma^0$  remain "small" from small to large angles
  - Strong resonance-like structure in the  $\Sigma^0$  at W=1.9 GeV.
- CLAS is providing the first measurements of the interference terms and R<sub>LT</sub> for scattering angles above 15°
- The strangeness program with CLAS continues, through both new experimental opportunities and a mining of the rich CLAS dataset.

