Proton Form Factor Measurements in the Time-like Region from BABAR

Bill Dunwoodie [SLAC]

Representing the BABAR Collaboration

JLab Users' Meeting, June 14, 2006

Outline

- (1) Status of PEP II and BABAR
- (2) Initial State Radiation (ISR) studies ; towards improved precision on R below ~ 3 GeV c.m.energy
- (3) ISR distributed luminosity { i.e. sampling, or radiator, function } for c.m. energy below
 4.5 GeV
- (4) $e^+ e^- \rightarrow p \bar{p}$ from threshold to 4.5 GeV; cross section, extraction of $|G_E| / |G_M|$
- (5) c. m. energy dependence of effective FF; comparison to mass dependence of p \overline{p} invariant amplitude squared for selected $B \rightarrow p \overline{p} X$ decays
- (6) Summary and status of ongoing analyses

Status of PEP II & BABAR

As of June 5th :

Production of hidden- and open-charm states

BABAR offers excellent options for charm / charmonium spectroscopy

Initial State Radiation (ISR) Studies at BABAR

• Objective :

Precise cross section measurements for all significant processes, $e^+ e^- \rightarrow f$, from threshold to c.m. energy ~ 4.5 GeV

• Purpose :

Significantly improve understanding of the spectroscopy of $J^{PC} = 1^{-1}$ states, and of their resonant substructure Combine the cross section measurements to obtain improved precision on the c.m. energy dependence of R in this region

Reactions for which results have been published :

 $\begin{array}{l} e^+e^- \rightarrow p\overline{p} & \qquad \qquad \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ e^+e^- \rightarrow 2\pi^+2\pi^-, \ K^+K^-\pi^+\pi^-, \ 2K^+2K^- \end{array}$

 $e^+e^- \to 3\pi^+ 3\pi^-,\, 2\pi^+ 2\pi^- \pi^0 \pi^0,\, K^+ K^- 2\pi^+ 2\pi^-$

• Work in progress on :

 $\pi^{+}\pi^{-}$, K \overline{K} , K \overline{K} π^{0} , K \overline{K} η , π^{+} π^{-} π^{0} π^{0} , π^{+} π^{-} $3(\pi^{0})$, $\Lambda \overline{\Lambda}$, $\Lambda \overline{\Sigma}$, $\Sigma \overline{\Sigma}$, d \overline{d} ,....

Brief comments on these states at end of Talk

Relevance of Precision R Measurements

-Muon anomalous magnetic moment (a_{μ})

-Running of α_{QED} (for SM fits, \Rightarrow Higgs Mass).

ISR at Y(4S) Energies

- rely on tagged photon for identification, loose hadronic selection
- Photon gives s'.
- High fiducial efficiency :
 - wide-angle ISR forces hadronic system into the detector fiducial region
 - Collimated hadronic system due to boost.
 - Weak dependence on details of fragmentation
- Harder momentum spectrum due to boost,
 - fewer problems with soft particles.

- whole √s' spectrum from threshold to ~4-5 GeV
- Greatly reduced point-to- point uncertainty
- Already used at KLOE, can be used at BaBar over a wider energy range and with tagged photons
- excellent resolution from kinematic fits

ISR Distributed Luminosity

(240 fb⁻¹)

Phys. Rev. D 73, 012005 (2006)

Event Selection for $e^+e^- \rightarrow p\overline{p}$

11

$p\overline{p}$: Efficiency, Cross Section, ψ 's

ISR production of $p\bar{p}$

Ø The cross section for $e^+e^- \rightarrow pp$ is parametrized by Electric (G_E) and Magnetic (G_M) form factors:

$$\sigma(m) = \frac{2\pi\alpha^2 \beta C}{3m^2} (2 |G_M(m)|^2 + \tau |G_E(m)|^2) \qquad \tau = \frac{4m_p^2}{m^2}$$

Ø Only BABAR has measurements in the entire range 1.875-4.5 GeV/ c^2

p

ISR production of $p\bar{p}$

Proton Form Factor Ratio From Dispersion Relations

B decay to final states containing $p\bar{p}$

The BES analysis of $J/\psi \rightarrow \gamma p \bar{p}$ { PRL 91, 022001 2003) } shows a very sharp rise at p \bar{p} threshold also, but the C parity is +1

The phase-space-corrected $p\bar{p}$ invariant mass for $B^0 \rightarrow \overline{D}^0 p\bar{p}$, $B^0 \rightarrow \overline{D}^{*0} p\bar{p}$, $B^0 \rightarrow D p\bar{p}\pi^+$ and $B^0 \rightarrow D^* p\bar{p}\pi^+$

Summary of p \overline{p} ISR Analysis at BABAR

- Studied e⁺ e⁻ \rightarrow p \overline{p} from threshold to 4.5 GeV ; measured cross section and extracted $|G_E| / |G_M|$
- Measured the c. m. energy dependence of the effective FF
 Compared to mass dependence of p p
 invariant amplitude squared for selected B → p p
 X decays ; behaviour very similar ; why ?

Work in progress :

- $\pi^+\pi^-$, K K : Michel Davier et al. [Orsay]; trying to reduce systematic uncertainty to ~ 1% { for g 2 }; very tough
- $\Lambda \overline{\Lambda}, \Lambda \overline{\Sigma}, \Sigma \overline{\Sigma}$: Vladimir Druzhinin [Novosibirsk]; low statistics, difficult
- d d : Sergey Serednyakov [Novosibirsk]; no events seen so far, but upper limit just above threshold may be getting interesting