First Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target Shifeng Chen Florida State Universit On behalf of CLAS collaboration Introduction Experimental setup **DVCS** Analysis $\mathbf{\Sigma} \pi^0$ Background Study Results Summary Jefferson Pal 06/13/2006

Generalized Parton Distributions (GPDs)

Deeply Virtual Compton Scattering (DVCS):

Direct Access to GPDs

DVCS is one of the key reactions to determine GPDs experimentally It is the simplest process that can be described in terms of GPDs

Target Spin Asymmetry for DVCS

Unpolarized electron beam Longitudinally polarized proton target

$$e \overrightarrow{p} \rightarrow e' p \gamma$$

Goal: measuring the target spin asymmetry (A_{III})

$$A_{UL}(\phi) = \frac{d\sigma^{\uparrow}(\phi) - d\sigma^{\downarrow}(\phi)}{d\sigma^{\uparrow}(\phi) + d\sigma^{\downarrow}(\phi)}$$

$$\propto \left\{ F_1 \widetilde{\mathbf{H}} + \xi (F_1 + F_2) (\mathbf{H} + \frac{\xi}{1 + \xi} \mathbf{E}) - \xi (\frac{\xi}{1 + \xi} F_1 + \frac{t}{4M^2} F_2) \widetilde{\mathbf{E}} \right\} \sin \phi$$
Kinematically Suppressed

CLAS EG1b Experiment

2000/2001 run

- 5.7 GeV electron beam
- Polarized ¹⁵NH₃ target
- Unpolarized ¹²C, ¹⁵N and ⁴He targets

Longitudinally Polarized Target

- ► 5 Tesla magnetic field, $\delta B/B \approx 10^{-4}$
- 1K LHe cooling bath
- Dynamically polarized ¹⁵NH₃ target
- Polarization ~ 75%

DVCS Events Selection

W > 2 GeV/c, $-t < 0.6 \text{ GeV}^2/c^2$, $Q^2 > 1 \text{ GeV}^2/c^2$

DVCS Events Selection

Measuring Target Spin Asymmetry

$$\boldsymbol{A}(\boldsymbol{\phi}) = \frac{1}{\boldsymbol{fP}_{t}} \frac{\boldsymbol{N}^{\uparrow}(\boldsymbol{\phi}) - \boldsymbol{N}^{\downarrow}(\boldsymbol{\phi})}{\boldsymbol{N}^{\uparrow}(\boldsymbol{\phi}) + \boldsymbol{N}^{\downarrow}(\boldsymbol{\phi})}$$

- • $N^{\uparrow(\downarrow)}$ is the luminosity-normalized and acceptance corrected number with positive (negative) target helicity
- • P_{t} is target polarization
- •*f* is dilution factor
- $\bullet \phi$ is the angle between reaction plane and scattering plane

"Observed" Single Photon Target Spin Asymmetry

Due to detector acceptance, the observed 1 γ events can be contaminated by π^0

 ϕ is the angle between the scattering plane and the reaction plane

We used observed π^0 data and Monte Carlo Studies to determine the π^0 Background

 ϕ is the angle between the scattering plane and the reaction plane

The ϕ dependence of the asymmetry is dominated by sin2 ϕ moment Different with the ϕ dependence of the asymmetry for DVCS

<u> π^0 Fraction in "observed" Single Photon Events</u>

Target Spin Asymmetry for DVCS

$$A_{UL}^{\exp}(\phi) = A_{UL}^{DVCS}(\phi) F_{DVCS}(\phi) + A_{UL}^{\pi^0}(\phi) F_{\pi^0}(\phi)$$

$$\checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark$$

Target Spin Asymmetry for DVCS

Model calculation is based on M. Vanderhaeghen, et al, Phy. Rev. D. (1999)

Kinematic Dependence

Model calculation is based on M. Vanderhaeghen, et al, Phy. Rev. D. (1999)

Summary

- First measured target spin asymmetry for DVCS shows asymmetry with approximate $\alpha \sin\phi + \beta \sin 2\phi$ modulation
 - *α*= 0.252 ±0.042(stat)±0.020(sys)
 - β= -0.022 ±0.045(stat)±0.021(sys)
- DVCS asymmetry is dominated by sin moment
- The measurements agree well with model calculations
- The asymmetry is sensitive to GPD H
- Combined with precision measurements of the beam spin asymmetry, these results will allow us to constrain different GPDs
- These results were submitted to *Phys. Rev. Lett.* (hep-ex/0605012)