

Deeply Virtual Compton Scattering in Hall A

A. Camsonne User Group meeting June 13th 2006

Deeply Virtual Compton Scattering

$$Q^{2} = -q^{2} = -(k - k')^{2} \qquad v = E - E'$$

$$x_{Bj} = \frac{Q^{2}}{2p \cdot q} = \frac{Q^{2}}{2Mv}$$

$$\Delta = (p' - p) \qquad P = p' + p$$

$$t = \Delta^{2} \qquad \xi = \frac{\Delta \cdot q}{P \cdot q}$$

Hall A DVCS experiment

- First dedicated experiment
 - High resolution on electron
 - Q² dependence
 - Better background rejection
 - High statistical accuracy
 - Cross-section measurement (high luminosity 10³⁷cm⁻².s⁻¹)
 - Exclusivity
 - Proton or neutron detector

User Group Meeting

Exclusive DVCS events

Missing mass with the proton array in triple coincidence

ep → eγX

Two arm data electron photon

 π^0 subtraction done using the 2 clusters π^0 sample recorded in the calorimeter to regenerate the isotropic π^0 distribution Extraction of the exclusive events by using the shape of the exclusive events.

Extraction

June 13th 2006

Subtraction Deuterium data minus Proton data

Conclusions

- Results for the proton DVCS cross sections
 - small contribution of the higher twist terms at Jefferson Laboratory kinematics
 - extraction of $Im(C^i)$ linear combination of GPDs
 - access to real part of the DVCS amplitude
- On-going work on the neutron DVCS
 - extraction of the contributions of the coherent and incoherent deuterium

The End

Systematic errors

Contribution	Value
Luminosity,acceptance spectro, acceptance calorimeter	3%
π^0 subtraction	3%
Inelastic background	3%
Beam polarization	2%
Radiative corrections	2%

Sampling system

- 1 GHz Analog Ring Sampler (ARS)
- x 128 samples x 289 detector channels

Sample each PMT signal in 128 values (1 value/ns)

Extract signal properties (charge, time) with a wave form Analysis.

Allows to deal with pile-up events.

User Group Meeting

Calorimeter trigger

Calorimeter trigger

Following HRS trigger, stop ARS.

30MHz trigger FADC digitizes all calorimeter signals in 85ns window.

- Compute all sums of 4 adjacent blocks.

- Look for at least 1 sum over threshold
- Validate or reject HRS trigger within 340 ns

13tNotoall the Proton Array channelspane and for each event

π^0 subtraction

Symmetric decay: two distinct photons are detected in the calorimeter \rightarrow No contamination

Asymmetric decay: 1 photon carries most of the π 0 energy \rightarrow contamination because DVCS-like event.

ב ב 400 -200 -400 -600

φ (deg)

June 13th 2006

 $\frac{d\sigma}{dQ^2 dx_B d\Delta^2 d\varphi_e d\varphi_{vv}} - \frac{d\bar{\sigma}}{dQ^2 dx_B d\Delta^2 d\varphi_e d\varphi_{vv}} = \Gamma^n_{\ A}(x_B, \varphi_e, \Delta^2, \varphi) \cdot \underline{A} \sin \varphi + \Gamma^n_{\ B}(x_B, \varphi_e, \Delta^2, \varphi) \underline{B} \sin 2\varphi$ $\Delta N^{Exp}(i_e) = N_i^+ - N_i^- + \Gamma^d_{\ C}(x_B, \varphi_e, \Delta^2, \varphi) \cdot C \sin \varphi + \Gamma^d_{\ D}(x_B, \varphi_e, \Delta^2, \varphi) D \sin 2\varphi$ $\Delta N^{MC}(i_e) = L \begin{bmatrix} A \int_{x \in i_e} \Gamma_A \cdot \sin \varphi \otimes Acc + B \int_{x \in i_e} \Gamma_B \cdot \sin 2\varphi \otimes Acc + \\ C \int_{x \in i} \Gamma_C \cdot \sin \varphi \otimes Acc + D \int_{x \in i_e} \Gamma_D \cdot \sin 2\varphi \otimes Acc \end{bmatrix}$ Binning on MC includes real radiative corrections (external+internal) the M_{v}^{2}