Proton Strunture and

Atomic P
 hestes

Cari E. Carlson

The College of William and Mary in Virginia

Spin Structure at Long Distance JLab, 12 March 2009
original parts done with Vahagn Nazaryan and Keith Griffioen PRL 96, 163001 (2006) and PRA 78, 022517 (2008)

Introduction

- General Subject: Proton structure effects upon precision atomic calculations.
- One direction: Proton structure needs to be understood and its effects included to calculation atomic quantities to part-per-million (ppm) level
- Reverse direction: Precise atomic measurements can constrain or even determine hadronic quantities
- Specific subject for most of this talk: Proton structure and the hydrogen hyperfine energy splitting to ppm level.

Just in case:

Hydrogen energy levels

Introduction

- In spatial ground state, spin-dependent magnetic interaction gives hyperfine splitting.

(spin-1)
(spin-0)
- Splitting known to 13 figures in frequency units,

$$
E_{h f s}\left(e^{-} p\right)=1420.4057517667 \text { (9) MHz }
$$

- Goal: Calculate hfs to part per million (ppm)

Introduction

- Why part per million (ppm) calculation?
- Challenge ...
- New physics?
- Note: Hints of new physics in B-meson physics (BEACH 2008: Conference on Hyperons, Charm, and Beauty Hadrons)
- Was several ppm discrepancy circa 2006
- Note: pure QED systems (e.g., muonium) easily allow ppm calculation and better. Problem is hadronic corrections --- proton structure.

Lowest order: "Fermi energy"

- Lowest order calculation can be and often is done in NR quantum mechanics course:

LO result is "Fermi energy,"

$$
E_{F}^{p}=\frac{8 \alpha^{3} m_{r}^{3}}{3 \pi} \mu_{B} \mu_{p}=\frac{16 \alpha^{2}}{3} \frac{\mu_{p}}{\mu_{B}} \frac{R_{\infty}}{\left(1+m_{e} / m_{p}\right)^{3}}
$$

- Convention: measured μ_{p} for proton, and Bohr magneton μ_{B} for electron.

First worry: are constants well enough known to calculate lowest order to ppm or better?

- A: Yes. Can calculate Fermi energy to 10 ppb :

$$
E_{F}^{p}=\frac{8 \alpha^{3} m_{r}^{3}}{3 \pi} \mu_{B} \mu_{p}=\frac{16 \alpha^{2}}{3} \frac{\mu_{p}}{\mu_{B}} \frac{R_{\infty}}{\left(1+m_{e} / m_{p}\right)^{3}}
$$

- R_{∞} is Rydberg constant in Hertz (6.6 ppt)
- m_{e} / m_{p} known to ppb
- $\boldsymbol{\alpha}$ known to $1 / 2 \mathrm{ppb}$
- μ_{p} / μ_{B} known to 10 ppb
- Hence E_{F}^{p} known to 10 ppb level

Effects of proton structure

- Proton size about 10-5 Ångström---enough to notice
- But not in one photon exchange:

- Fermi momentum of bound electron is order $m_{e} \alpha$, so Q^{2} of exchanged photon is order $\left(m_{e} \alpha\right)^{2}$. Proton form factor doesn't notice until ppt level.
- Hence not mentioned in first year quantum course

Two-photon exchange

- short wavelength photon sees inside proton---effect depends on proton structure
- Inter-proton intermediate state may be proton or may be excited (inelastic) states

Corrections -- notation

$$
E_{\mathrm{hfs}}\left(\ell^{-} p\right)=\left(1+\Delta_{\mathrm{QED}}+\Delta_{\mathrm{hvp}}^{p}+\Delta_{\mu \mathrm{vp}}^{p}+\Delta_{\text {weak }}^{p}+\Delta_{\mathrm{S}}\right) E_{F}
$$

- $\triangle_{Q E D}$: pure QED, well calculated
- $\Delta_{\text {hvp, }} \Delta_{\mu v p}, \Delta_{\text {weak }}:$ some vacuum polarization terms and Z-boson exchange: small, not a problem
- Wanted here: $\Delta_{S}=\Delta_{z}+\Delta_{R}+\Delta_{\text {pol }}$
- Proton structure corrections
- Names: Zemach, recoil, \& polarizability terms
- all 2-photon exchange

Commentary

- Δ_{s} (total) will be about 40 ppm, so need ca. 2% accuracy
- What we do
- Use data from electron scattering to measure proton structure
- Calculate proton structure effects on HHFS from results of these measurements
- What we don't do
- We don't start from scratch, using QCD Lagrangian, or facsimile, to calculate proton structure correction. Not now possible to reach target precision calculating $a b$ initio.
- Cf., Chiral Lagrangian calculation by Pineda (2003) gets about $2 / 3$ target Δ_{s}; or about 13 ppm accuracy

Calculation

- Want

- Don't know lower line (forward off-shell Compton scattering). Note particularly that inter-proton states are not generally on shell.
- But imaginary part of diagram comes from case when intermediate electron and inter-proton states are on-shell. Can get real part by Cauchy integral formula (dispersion relation).

Optical theorem

- I.e., for lower part of diagram

Im $\{$ forward scattering amplitude $\} \propto$ total cross section

- RHS is cross section for $e+p \rightarrow e^{\prime}+X$
- Codified in terms of form factors F_{1}, F_{2} for elastic part and in terms of structure functions for inelastic part.

For HFS calculation only need spin dependent g_{1}, g_{2}.

- Measured at SLAC, DESY, JLab, Mainz,

Will quote results--first some comments

- Forward Compton amplitude (with photon off-shell) depends on variables, v and Q^{2}. Do dispersion relation in V.
- Use unsubtracted dispersion relation
- Depends on amplitudes falling to zero fast enough as $|v| \rightarrow \infty$.
- Seems o.k. from Regge analysis of amplitudes
- Seems o.k. from test calculations in QED
- Correlates with " $g_{p}(\infty)$ " $=0$ from Sandorfi's talk.

Tip of the hat to the experimenters

- Jefferson Lab (Newport News, VA, USA) experiment EG1 measured spin-dependent inelastic electronproton scattering
- $Q^{2}>0.045 \mathrm{GeV}^{2}$ (earlier SLAC expt. had $Q^{2}>0.15 \mathrm{GeV}^{2}$)
- Results in terms of structure functions gi_{i}
- For reference,

Aerial view of accelerator and experimental halls

$$
\begin{aligned}
& \frac{d \sigma_{\rightarrow \rightarrow}}{d E^{\prime} d \Omega}-\frac{d \sigma_{\rightarrow \leftarrow}}{d E^{\prime} d \Omega}=\frac{8 \alpha^{2} E^{\prime}}{m_{p} Q^{2} E}\left(\frac{E+E^{\prime} \cos \theta}{m_{p} v} g_{1}+\frac{Q^{2}}{m_{p} v^{2}} g_{2}\right) \\
& \frac{d \sigma_{\rightarrow \uparrow}}{d E^{\prime} d \Omega}-\frac{d \sigma_{\rightarrow \downarrow}}{d E^{\prime} d \Omega}=\frac{8 \alpha^{2} E^{\prime 2}}{m_{p}^{2} Q^{2} E v} \sin \theta\left(g_{1}-\frac{2 E}{v} g_{2}\right)
\end{aligned}
$$

Results for structure dep. corr. Δ_{s}

- Recall $\Delta_{s}=\Delta_{z}+\Delta_{R}+\Delta_{\text {pol }}$
- Zemach term Δz is NR part of elastic contribution,

$$
\Delta_{\mathrm{Z}}=\frac{8 \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left[G_{E}\left(Q^{2}\right) \frac{G_{M}\left(Q^{2}\right)}{1+\kappa_{p}}-1\right] \equiv-2 \alpha m_{r} r_{Z}
$$

- Charles Zemach, 1956
- r_{z} is "Zemach radius"; m_{r} is reduced mass

More formula results

- Recoil term Δ_{R} : relativistic part of elastic contribution (plus extra term to be explained)

$$
\begin{aligned}
\Delta_{R}^{p}= & \frac{2 \alpha m_{r}}{\pi m_{p}^{2}} \int_{0}^{\infty} d Q F_{2}\left(Q^{2}\right) \frac{G_{M}\left(Q^{2}\right)}{1+\kappa_{p}} \\
+\frac{\alpha m_{\ell} m_{p}}{2\left(1+\kappa_{p}\right) \pi\left(m_{p}^{2}-m_{\ell}^{2}\right)}\{ & \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left(\frac{\beta_{1}\left(\tau_{p}\right)-4 \sqrt{\tau_{p}}}{\tau_{p}}-\frac{\beta_{1}\left(\tau_{\ell}\right)-4 \sqrt{\tau_{\ell}}}{\tau_{\ell}}\right) F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right) \\
& \left.+3 \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left(\beta_{2}\left(\tau_{p}\right)-\beta_{2}\left(\tau_{\ell}\right)\right) F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)\right\} \\
- & \frac{\alpha m_{\ell}}{2\left(1+\kappa_{p}\right) \pi m_{p}} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \beta_{1}\left(\tau_{\ell}\right) F_{2}^{2}\left(Q^{2}\right)
\end{aligned}
$$

- $\beta_{1,2}$ on next page; $T_{i} \equiv Q^{2} / 4 m_{i}{ }^{2}$
- Memorize the last term
- Polarizability terms are inelastic terms with one elastic term added, and given as

$$
\Delta_{\mathrm{pol}}=\frac{\alpha m_{\ell}}{2\left(1+\kappa_{p}\right) \pi m_{p}}\left(\Delta_{1}+\Delta_{2}\right)
$$

(the prefactor is about $1 / 4 \mathrm{ppm}$ for electrons)
$\Delta_{1}=\int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{\beta_{1}\left(\tau_{\ell}\right) F_{2}^{2}\left(Q^{2}\right)+\frac{8 m_{p}^{2}}{Q^{2}} \int_{0}^{x_{t h}} d x \frac{x^{2} \beta_{1}(\tau)-\left(m_{\ell}^{2} / m_{p}^{2}\right) \beta_{1}\left(\tau_{\ell}\right)}{x^{2}-m_{\ell}^{2} / m_{p}^{2}} g_{1}\left(x, Q^{2}\right)\right\}$
$\Delta_{2}=-24 m_{p}^{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{4}} \int_{0}^{x_{t h}} d x \frac{x^{2}\left[\beta_{2}(\tau)-\beta_{2}\left(\tau_{\ell}\right)\right]}{x^{2}-m_{\ell}^{2} / m_{p}^{2}} g_{2}\left(x, Q^{2}\right)$
with

$$
\begin{aligned}
\tau & =v^{2} / Q^{2} \\
\beta_{1}(\tau) & =-3 \tau+2 \tau^{2}+2(2-\tau) \sqrt{\tau(\tau+1)} \\
\beta_{2}(\tau) & =1+2 \tau-2 \sqrt{\tau(\tau+1)}
\end{aligned}
$$

- Massless lepton: Drell and Sullivan and others, 1960 and early 1970s
- Massive lepton: Faustov, Cherednikova, and Martynenko, 2003; Us, 2008.

Comments

- Why did the $\mathrm{F}_{2}{ }^{2}$ term included in polarizability?

Ans: It makes Δ_{1} finite in the massless lepton limit

$$
\Delta_{1}=\int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{\frac{9}{4} F_{2}^{2}\left(Q^{2}\right)+4 m_{p} \int_{v_{t h}}^{\infty} \frac{d v}{v^{2}} \beta_{1}(\tau) g_{1}\left(v, Q^{2}\right)\right\}
$$

$\left(Q^{2} \rightarrow 0\right.$ limit of β_{1} is $9 / 4$)

- GDH sum rule states:

$$
4 m_{p} \int_{v_{t h}}^{\infty} \frac{d v}{v^{2}} g_{1}(v, 0)=-\kappa_{p}^{2}
$$

Hence second integral by itself divergent at $Q^{2}=0$ endpoint. The $\mathrm{F}_{2}{ }^{2}$ term cancels the divergence.

- Convenience: All terms finite for $\mathrm{m}_{\ell} \neq 0$
- And convention: $F_{2}{ }^{2}$ multiplied by any convergent function $f\left(Q^{2}\right)$ with $f(0)=1$ would still work.

Not how to do calculation in 2009

- For elastic scattering only, might consider boxes

and put in photon-proton-proton vertices given by

$$
\Gamma_{\mu}=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 m_{p}} \sigma_{\mu \nu} q^{\nu} F_{2}\left(q^{2}\right)
$$

- But: don't know F_{1}, F_{2} because one proton off shell.
- Can and has been done by Bodwin-Yennie (1988) and others. Gives Zemach term + the recoil term exactly as quoted here. (!) Reason: choice of $F_{2}{ }^{2}$ term in Δ_{1}.
- Beware: don't mix elastic contributions from Bodwin-Yennie (i.e., as quoted here) with $\Delta_{\text {pol }}$ calculated separately, with possibly different choice of $F_{2}{ }^{2}$ term.

Developments

- New since 2000:
g_{1}, g_{2} data good enough to give non-zero $\Delta_{\text {pol }}$
(Faustov \& Martynenko, 2002)
- New since 2006:
- Final data from JLab EG1 expt. published, with systematic errors.
[Prok et al., PLB 672, 12-16 (2009)]
- New fits to proton form factor data (ArringtonSick, Arrington-Melnitchouk-Tjon)
[Albeit new low- $Q^{2} G_{E}$ data from Mainz (J. Bernauer, unpub.) not yet incorporated]

Results for $\Delta_{\text {pol }} 2008$

Term	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	From	Value w/ AMT F_{2}
Δ_{1}	[0, 0.0452]	$F_{2} \& g_{1}$	1.35(0.22)(0.87) ()
	[0.0452, 20]	F_{2}	7.54 () (0.23) ()
		g_{1}	$-0.14(0.21)(1.78)(0.68)$
	$[20, \infty]$	F_{2}	0.00 () (0.00) ()
		g_{1}	0.11 () () (0.01)
total Δ_{1}			8.85(0.30)(2.67)(0.70)
Δ_{2}	[0, 0.0452]	g_{2}	-0.22 () () (0.22)
	[0.0452, 20]	g_{2}	-0.35 () () (0.35)
	[20, ∞]	g_{2}	0.00 () () (0.00)
total Δ_{2}			-0.57 () () (0.57)
$\Delta_{1}+\Delta_{2}$			8.28(0.30)(2.67)(0.90)
$\Delta_{\text {pol }}$ (ppm)			$1.88(0.07)(0.60)(0.20)$

- errors (statistical)(systematic from data)(modeling)
- AMT = Form factors fit by Arrington, Melnitchouk, Tjon (2007)
- Quote polarizability correction as 1.88 ± 0.64 ppm
- compatible with Faustov-Martynenko (2002).

Overall results for ordinary hydrogen 2008 (current latest)

Quantity $\left(E_{\mathrm{hfs}}\left(e^{-} p\right) / E_{F}^{p}\right)-1$	value (ppm) 1	uncertainty (ppm) 0.01
Δ_{QED}	1136.19	0.00
$\Delta_{\mu \mathrm{pp}}+\Delta_{\mathrm{hvp}}^{p}+\Delta_{\text {weak }}^{p}$	0.14	
$\Delta_{Z}($ using AMT)	-41.43	0.44
Δ_{R}^{p} (using AMT)	5.85	0.07
$\Delta_{\text {pol }}$ (this work, using AMT)	1.88	0.64
Total	1102.63	0.78
Deficit	0.85	0.78

HHFS ending and outlook

- Our 2008 result using 2001 EG1 data (out in '08, Prok et al., PLB 672, 12-16 (2009)):

$$
\Delta_{\mathrm{pol}}=1.88 \pm 0.64 \mathrm{ppm}
$$

- Table of non-zero results

Authors

$$
\begin{gathered}
\Delta_{\mathrm{pol}}(\mathrm{ppm}) \\
1.4 \pm 0.6 \\
1.3 \pm 0.3 \\
2.2 \pm 0.8 \\
1.88 \pm 0.64
\end{gathered}
$$

Faustov \& Martynenko (2002)
Us (2006)
Faustov, Gorbacheva, \& Martynenko (2006)
Us (2008)

- (Faustov et al. don't use JLab data)
- Sum of all corrections now just under 1 ppm, or about 1 standard deviation, from data

Outlook

- Have come a long way since my 1987 QM course notes claim that best calculations had 30 ppm accuracy.
- Future:
- Better form factor fits. Uncertainties in Zemach term not now trivial. Low Q^{2} elastic FF important. New data from Mainz should have useful impact.
- Improved measurements of proton charge radius from Lamb shift expts. (not yet mentioned). Currently 1% error. May reduce by factor 10 with Lamb shift measurements (PSI, 2009) in μ hydrogen.
- Lower systematic error in g1. Already exists (unpublished) EG4 data ($Q^{2}>0.015 \mathrm{GeV}^{2}$ instead of $0.045 \mathrm{GeV}^{2}$).
- g_{2} measurements for proton. Hfs less sensitive to g_{2}, but g_{2} measurements welcome, and perhaps forthcoming (e.g., "SANE" in Hall C or "g2p" in Hall A (JLab)). Especially like low Q^{2} data.
- Thinkable to have 0.3 ppm uncertainty in some years.

Extra part -- Muonic hydrogen

- Muonic hydrogen HFS may be measured at PSI along side Lamb shift measurements.
- QED corrections about same as for electron, but structure dependent corrections, e.g.,
$\Delta_{\mathrm{Z}}=\frac{8 \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left[G_{E}\left(Q^{2}\right) \frac{G_{M}\left(Q^{2}\right)}{1+\kappa_{p}}-1\right] \equiv-2 \alpha m_{r} r_{Z}$
bigger by about m_{μ} / m_{e}.

Results for $\Delta_{\text {pol }} 2008$--- muonic hydrogen

Term	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	From	Value w/AMT F_{2}
Δ_{1}	[0, 0.0452]	F_{2} and g_{1}	0.86(0.17)(0.67) ()
	[0.0452, 20]	F_{2}	6.77 () (0.21) ()
		g_{1}	0.18(0.18)(1.62)(0.64)
	$[20, \infty]$	F_{2}	0.00 () (0.00) ()
		g_{1}	0.11 () () (0.01)
total Δ_{1}			7.92(0.25)(2.30)(0.66)
Δ_{2}	[0, 0.0452]		-0.12 () () (0.12)
	[0.0452, 20]	g_{2}	-0.29 () () (0.29)
	$[20, \infty$]	g_{2}	-0.00 () () (0.00)
total Δ_{2}			-0.41 () () (0.41)
$\Delta_{1}+\Delta_{2}$			7.51(0.25)(2.30)(0.77)
$\Delta_{\text {pol }}(\mathrm{ppm})$			351.(12.)(107.)(36.)

Important note

- For $m_{\ell} \neq 0$, previoiusly published result (Cherednikova et al.) different from ours. Difference due to different treatment of $\mathrm{F}_{2}{ }^{2}$ terms in polarizability.

$$
\begin{aligned}
\Delta_{1} & =\int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{\frac{9}{4} \beta_{0}\left(\tau_{\ell}\right) F_{2}^{2}\left(Q^{2}\right)+\text { rest same }\right\} \\
\beta_{0}\left(\tau_{\ell}\right) & =2 \sqrt{\tau(\tau+1)}-2 \tau
\end{aligned}
$$

- Perfectly o.k.: just use recoil term that matches $F_{2}{ }^{2}$ term added to polarizability. Ours is tuned to old BodwinYennie calculation of elastic terms.
- Using Bodwin-Yennie elastic terms with Cherednikova et al. polarizability requires further correction for $\mu \mathrm{HFS}$

$$
\Delta_{\text {pol }}(\text { corr. })=\frac{\alpha m_{r}}{2\left(1+\kappa_{p}\right) \pi m_{p}} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{\beta_{1}\left(\tau_{\ell}\right)-\frac{9}{4} \beta_{0}\left(\tau_{\ell}\right) F_{2}^{2}\left(Q^{2}\right)\right\}=-128 \mathrm{ppm}
$$

- Mentioned because $2 \underset{28}{\text { uncorrected examples available }}$

Inelastic/Elastic tidbit

* Why is inelastic contribution so small? A: It isn't. Some of it got moved, using the magic of the DHG sum rule. (Motive was to remove $\ln \left(m_{e}\right)$ terms from inelastic contributions.)
* The pure $F_{2}{ }^{2}$ term in recoil correction came from $\Delta_{\text {pol }}$.
* This term is $-22.38 \mathrm{ppm}(!)$

(AMT)	term moved		term not moved
Zemach	-41.43	Zemach	-41.43
"Recoil"	5.85	Recoil	28.22
"Total elastic"	-35.58	Actual elastic	-13.21
Polarizability	1.88	Pure inelastic	-20.49
Total proton str.	-33.70	Total proton str.	-33.70

* I.e., Actual contribution of g_{1} quite large.

The end

Extras

Just in case

Extent of galaxies, seen in 21 cm radio light

- NGC 5102, Local Volume HI Survey
- Radio observations laid over optical photo
- $3 X$ bigger in radio light

Velocity of H-gas, seen with 21 cm line

- DDO 154, Carignan et al.
- Numbers give velocities, in $\mathrm{km} / \mathrm{sec}$, from Doppler shift
- rotation curve

*NGC 3198
* Typical of many
* Rotation curve shows need for extra (dark) matter---or change in gravitational force law at long distance

The visible NGC 3198

- Long history.
- Zemach (1956) calculates hfs from elastic contributions in terms of proton form factors.
- Iddings (1965), Drell and Sullivan (1967), deRafael (1971) calculate inelastic (polarizability) contribution to hydrogen hfs.
- Faustov and Martynenko (2002), using SLAC data, estimate numerically the polarizability contribution to hydrogen hfs. First to get result inconsistent with zero.
- Friar and Sick (2004) determine the Zemach radius [to be defined] using world form factor data.
- Dupays et al. (2003), Volotka et al. (2005), Brodsky et al. (2005) infer Zemach radius from hfs data using polarizability results of Faustov and Martynenko.
- Inconsistencies between last two called for a review of corrections.
- Newer data from JLab, esp. at lower Q^{2}, crucial for this purpose.

Final indelicate point

- Can we use the dispersion relation? Depends.
- E.g., do elastic box calculation

- Pole at value of photon energy that makes the intermediate proton "real":

$$
v=Q^{2} /\left(2 m_{p}\right)
$$

FIP

- Inelastic case similar. If total mass of intermediate state is W, pole at

$$
v=\left(W^{2}-m_{p}^{2}+Q^{2} /\left(2 m_{p}\right)\right.
$$

6 W is continuously varying from threshold \& up. Hence H_{1} has elastic pole in v plus cut,
pole/cut structure of H_{1} in complex v^{2}-plane

- In using Cauchy formula, pole and cut have been kept
- Infinite contour discarded: Legitimate if function falls to zero fast enough
- Fails for $\mathrm{H}_{1}{ }^{\text {el }}$ alone, but we are dealing with composite particle
- QED models say it is o.k.
- Regge models say it is o.k.

Outlook

- Current best charge radius measurements come from Lamb shift, error 1% vs. 2\% from electron scattering. Experiment "imminent" to do muonic hydrogen Lamb shift, with possible 0.1% accurate charge radius!

New low $-Q^{2} G_{E}$ data from Mainz (J. Bernauer, unpub., shown at conferences, e.g. Walcher, ECT*, May 2008)

End

