# Neutron $(^{3}\text{He})$ Spin Structure Functions at Low $Q^{2}$



Vincent Sulkosky Jefferson Laboratory

Spin Structure at Long Distance March 12<sup>th</sup> 2009



Spin Structure at Long Distance – p.1/31

## Introduction

- Experiment E97-110:
  - Precise measurement of generalized GDH integral at low Q<sup>2</sup>,
     0.02 to 0.3 GeV<sup>2</sup> for the neutron and <sup>3</sup>He.
  - Cover an unmeasured region of kinematics to test rigorous theoretical calculations (Chiral Perturbation Theory).



# Introduction

- Experiment E97-110:
  - Precise measurement of generalized GDH integral at low Q<sup>2</sup>,
     0.02 to 0.3 GeV<sup>2</sup> for the neutron and <sup>3</sup>He.
  - Cover an unmeasured region of kinematics to test rigorous theoretical calculations (Chiral Perturbation Theory).
  - Data from experiment E94-010 covered the transition region (0.1 to 0.9 GeV<sup>2</sup>) from non-perturbative (mesons and baryons) to perturbative QCD (quarks and gluons).



# Introduction

- Experiment E97-110:
  - Precise measurement of generalized GDH integral at low Q<sup>2</sup>,
     0.02 to 0.3 GeV<sup>2</sup> for the neutron and <sup>3</sup>He.
  - Cover an unmeasured region of kinematics to test rigorous theoretical calculations (Chiral Perturbation Theory).
  - Data from experiment E94-010 covered the transition region (0.1 to 0.9 GeV<sup>2</sup>) from non-perturbative (mesons and baryons) to perturbative QCD (quarks and gluons).
  - Preliminary results are now available and will be finalized in a few months.



### **Inclusive Cross Sections**

• structure functions:

 $g_1$  and  $g_2$  (quark polarizations) or  $\sigma_{TT}$  and  $\sigma_{LT}$  $\sigma_{TT} = \sigma_{1/2}(x, Q^2) - \sigma_{3/2}(x, Q^2)$ 

Polarized cross sections

$$\Delta \sigma_{\parallel} = \frac{d^2 \sigma^{\downarrow\uparrow}}{dE' d\Omega} - \frac{d^2 \sigma^{\uparrow\uparrow}}{dE' d\Omega} = K \left[ \left( E + E' \cos \theta \right) g_1(x, Q^2) - \left( \frac{Q^2}{\nu} \right) g_2(x, Q^2) \right]$$
$$\Delta \sigma_{\perp} = \frac{d^2 \sigma^{\downarrow\Rightarrow}}{dE' d\Omega} - \frac{d^2 \sigma^{\uparrow\Rightarrow}}{dE' d\Omega} = KE' \sin \theta \left[ g_1(x, Q^2) + \frac{2E}{\nu} g_2(x, Q^2) \right]$$
$$K = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E}$$

 $\downarrow\uparrow$  is for electron spin,  $\Uparrow\Rightarrow$  is for target spin direction



Gerasimov-Drell-Hearn (GDH) Sum Rule ( $Q^2 = 0$ )

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha (\frac{\kappa}{M})^2$$

- Circularly polarized photons incident on a longitudinally polarized spin-<sup>1</sup>/<sub>2</sub> target.
- $\sigma_{\frac{1}{2}}(\sigma_{\frac{3}{2}})$  photoabsorption cross section with photon helicity parallel (anti-parallel) to the target spin.
- The sum rule is related to the target's mass M and anomalous part of the magnetic moment  $\kappa$ .
- Sum rules are solid theoretical predictions based on general principles.



# **GDH** Measurements

The sum rule is valid for any target with definite spin-S.

|          | M[GeV] | Spin          | $\kappa$ | $I_{ m GDH}[\mu \ {\sf b}]$ |
|----------|--------|---------------|----------|-----------------------------|
| Proton   | 0.938  | $\frac{1}{2}$ | 1.79     | -204.8                      |
| Neutron  | 0.940  | $\frac{1}{2}$ | -1.91    | -233.2                      |
| Deuteron | 1.876  | 1             | -0.14    | -0.65                       |
| Helium-3 | 2.809  | $\frac{1}{2}$ | -8.38    | -498.0                      |

- Proton sum rule was verified, Mainz, Bonn and LEGS.
- Measurements for the neutron are in progress.

See A. Sandorfi talk.



Generalized GDH Integral ( $Q^2 > 0$ )

 $\mathcal{O}$ 

$$I(Q^{2}) = \int_{\nu_{\rm th}}^{\infty} \left[ \sigma_{\frac{1}{2}}(\nu, Q^{2}) - \sigma_{\frac{3}{2}}(\nu, Q^{2}) \right] \frac{d\nu}{\nu}$$
  
$$F_{1/2} - \sigma_{3/2} = \frac{8\pi^{2}\alpha}{MK} \left[ g_{1}(\nu, Q^{2}) - \left(\frac{Q^{2}}{\nu^{2}}\right) g_{2}(\nu, Q^{2}) \right]$$

- Replace photoproduction cross sections with the corresponding electroproduction cross sections.
- The integral is related to the Compton scattering amplitude:  $S_1(Q^2)$ .

$$S_1(Q^2) = \frac{8}{Q^2} \int_0^1 g_1(x, Q^2) dx = \frac{8}{Q^2} \Gamma_1(Q^2)$$

X.-D. Ji and J. Osborne, J. Phys. G27, 127 (2001)

At  $Q^2 = 0$ , the GDH sum rule is recovered.



First moment of  $g_1$  and  $g_2$ 

$$\Gamma_1 = \int_0^1 g_1(x, Q^2) dx$$
$$\Gamma_2 = \int_0^1 g_2(x, Q^2) dx$$

- $\Gamma_1$  is closely related to generalized GDH integral as  $Q^2 \rightarrow 0$ .
- $g_2$  is suppressed at very low  $Q^2$ .

Bjorken Sum Rule ( $Q^2 \rightarrow \infty$ )

- $g_A$  is the nucleon axial charge.
- The sum rule has been confirmed to 10%.

$$\Gamma_1^{\rm p} - \Gamma_1^{\rm n} = \frac{g_{\rm A}}{6}$$

J.D. Bjorken, Phys. Rev. 148, 1467 (1966)



**Spin Structure at Long Distance** – p.7/31

# Importance of the Generalized GDH Sum Rule



- Constrained at the two ends of the  $Q^2$  spectrum by known sum rules: GDH ( $Q^2 = 0$ ) and Bjorken ( $Q^2 \to \infty$ ).
- Generalized GDH Integral is calculable at any  $Q^2$ .
- Compare theoretical predictions to experimental measurements over the entire  $Q^2$  range.
- Tool to study non-perturbative QCD, while starting on known theoretical grounds (pQCD).



# Hall A Neutron GDH Published Results

#### Neutron



M. Amarian et al., PRL 89, 242301 (2002)

**Jefferson Lab** 

#### Helium-3



K. Slifer et al., PRL 101, 022303 (2008).

Spin Structure at Long Distance – p.9/31

# Experiment E97-110

Precise measurement of generalized GDH integral at low Q<sup>2</sup>, 0.02 to 0.3 GeV<sup>2</sup>

- Ran in spring and summer 2003
- Inclusive experiment:  ${}^{3}\text{He}(\vec{e},e')X$ 
  - $\Rightarrow$  Scattering angles of 6° and 9°
  - $\Rightarrow$  Polarized electron beam:

 $\langle P_{\rm beam} \rangle$  = 75%

 $\Rightarrow$  Pol. <sup>3</sup>He target (para & perp):

 $\langle P_{\rm targ} \rangle$  = 40%

 Measured polarized crosssection differences





# **Experimental Setup**





**Spin Structure at Long Distance** – p.11/31

## New Bending Magnet

- Low  $Q^2$  requires forward angles.
- Minimum spectrometer angle is 12.5°.



<sup>3</sup>He as an Effective Polarized Neutron Target



 $P_{\rm n}$  = 86% and  $P_{\rm p}$  = -2.8% J.L. Friar *et al.*, PRC 42, (1990) 2310

#### **Extraction of Neutron Results**

$$\Gamma_1^{\rm n}(Q^2) = \frac{1}{P_{\rm n}} \left[ \Gamma_1^{\rm ^3He}(Q^2) - 2P_{\rm p}\Gamma_1^{\rm p}(Q^2) \right]$$

C. Ciofi degli Atti & S. Scopetta, PLB 404, (1997) 223



Spin Structure at Long Distance – p.13/31

# Polarized <sup>3</sup>He System

- Both longitudinal and transverse configurations.
- Two independent polarimetries: NMR and EPR.





# Kinematic Coverage and Interpolation



Six constant  $Q^2$  points: 0.04, 0.06, 0.08, 0.1, 0.12 and 0.24 GeV<sup>2</sup>.



Spin Structure at Long Distance – p.15/31

 $^{3}$ He -  $g_{1}$ ,  $g_{2}$  versus x at constant  $Q^{2}$ 



Jefferson Lab

Spin Structure at Long Distance – p.16/31

 $^{3}$ He -  $\frac{\sigma_{TT}}{\nu}$  versus W at constant  $Q^{2}$ 



Spin Structure at Long Distance - p.17/31



$$\Gamma_1 = \int_0^1 g_1(x, Q^2) dx$$



Jefferson Lab

# Preliminary

Spin Structure at Long Distance – p.18/31

# $\Gamma_1^n$ : First Moment of $g_1$

Jefferson Lab



Spin Structure at Long Distance – p.18/31

# $\Gamma_2^n$ : First Moment of $g_2$

$$\Gamma_2^n(Q^2) = \int_0^1 g_2(x, Q^2) dx = 0$$

#### Burkhardt-Cottingham Sum Rule



Jefferson Lab

Spin Structure at Long Distance – p.19/31

# Summary and Conclusion

- The GDH integral is an important tool that can be used to study nucleon spin structure over the full  $Q^2$  range:
  - in particular, the transition from perturbative QCD to nonperturbative QCD.
- Experiment E97-110 provides precision data for moments of spin structure functions at low Q<sup>2</sup>: 0.02 to 0.3 [GeV/c]<sup>2</sup>
- Preliminary results of the the neutron moments are available and work is in progress to finalize the systematic effects.
- These data provide a precision test of Chiral Perturbation Theory calculations at a  $Q^2$  where they are expected to be valid.
- Expect final neutron results soon.



# Systematic Uncertainties

| Source                     | Systematic Uncertainty        |            |                       |  |
|----------------------------|-------------------------------|------------|-----------------------|--|
| Angle                      | <b>6</b> °                    | <b>9</b> ° | 3.775 GeV, 9 $^\circ$ |  |
| Target density             | 2.0%                          |            |                       |  |
| Acceptance/Effects         | 5.0%                          | 5.0%       | 15.0%                 |  |
| VDC efficiency             | 3.0%                          | 2.5%       | 2.5%                  |  |
| Charge                     | 1.0%                          |            |                       |  |
| PID Detector and Cut effs. | < 1.0%                        |            |                       |  |
| $\delta\sigma_{ m raw}$    | 6.4%                          | 6.2%       | 15.5%                 |  |
| Nitrogen dilution          | 0.2–0.5%                      |            |                       |  |
| $\delta\sigma_{ m exp}$    | 6.5%                          | 6.3%       | 15.5%                 |  |
| Beam Polarization          | 3.5%                          |            |                       |  |
| Target Polarization        | 7.5%                          |            |                       |  |
| Radiative Corrections*     | 20% (40% for $Q^2 \leq$ 0.08) |            |                       |  |
| Total on $\Delta\sigma$    | 10.5%                         | 10.4%      | 17.6%                 |  |

 $\ast$  Radiative correction  $\approx$  5–10% in delta region



Spin Structure at Long Distance – p.21/31

### Future Prospects: Spin Polarizabilities



M. Amarian et al., PRL 93, 152301 (2004)



Spin Structure at Long Distance – p.22/31

### The E97-110 Collaboration

S. Abrahamyan, K. Aniol, D. Armstrong, T. Averett, S. Bailey, P. Bertin, W. Boeglin, F. Butaru, A. Camsonne, G.D. Cates, G. Chang, J.P. Chen, Seonho Choi, E. Chudakov, L. Coman, J. Cornejo, B. Craver, F. Cusanno, R. De Leo, C.W. de Jager, A. Deur, K.E. Ellen, R. Feuerbach, M. Finn, S. Frullani, K. Fuoti, H. Gao, F. Garibaldi, O. Gayou, R. Gilman, A. Glamazdin, C. Glashausser, J. Gomez, O. Hansen, D. Hayes, B. Hersman, D. W. Higinbotham, T. Holmstrom, T.B. Humensky, C. Hyde-Wright, H. Ibrahim, M. Iodice, X. Jiang, L. Kaufman, A. Kelleher, W. Kim, A. Kolarkar, N. Kolb, W. Korsch, K. Kramer, G. Kumbartzki, L. Lagamba, G. Laveissiere, J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, B. Ma, D. Margaziotis, P. Markowitz, K. McCormick, Z.E. Meziani, R. Michaels, B. Moffit, P. Monaghan, S. Nanda, J. Niedziela, M. Niskin, K. Paschke, M. Potokar, A. Puckett, V. Punjabi, Y. Qiang, R. Ransome, B. Reitz, R. Roche, A. Saha, A. Shabetai, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, R. Stringer, R. Subedi, V. Sulkosky, W.A. Tobias, P. Ulmer, G. Urciuoli, A. Vacheret, E. Voutier, K. Wang, L. Wan, B. Wojtsekhowski, S. Woo, H. Yao, J. Yuan, X. Zheng, L. Zhu

#### and the Jefferson Lab Hall A Collaboration



# **Extra Slides**



Spin Structure at Long Distance – p.24/31

# Constant $Q^2$ Interpolation and Integral Extraction

Procedure:

- First interpolate to constant W for each energy.
- Second interpolation with respect to  $Q^2$ .
- Integrals formed from W = 1073 GeV to 2000 GeV.
- We could use our own data above W = 2000 GeV.
- DIS contribution included up to  $W = \sqrt{1000}$  using Thomas and Bianchi parameterization.
- Neutron extraction performed using calculation from Scopetta and Ciofi degli Atti paper for  $Q^2 >= 0.1 \text{ GeV}^2$ .
- $Q^2 < 0.1 \text{ GeV}^2$  use effective polarization technique (difference  $\sim$  5–10%).



# **Inclusive Electron Scattering**

Energy transfer:

$$\nu = E - E'$$

4-momentum transfer squared:

$$\vec{q} = \vec{k} - \vec{k'}$$
$$Q^2 = -q^2 = 4EE' \sin^2 \frac{\theta}{2}$$

**Invariant Mass:** 

$$W^2 = M^2 + 2M\nu - Q^2$$

Bjorken variable:

$$x = \frac{Q^2}{2M\nu}$$





# **GDH** Derivation for Real Photons

- Begin with the spin dependent part of the forward Compton amplitude,  $S_1$
- Use the following dispersion relation and three assumptions:

Re 
$$S_1(\nu) = \frac{2\nu}{\pi} \int_{\nu_{\rm th}}^{\infty} d\nu' \frac{\text{Im } S_1(\nu')}{\nu'^2 - \nu^2}$$

- Optical Theorem: Im  $S_1(\nu) = \frac{\nu}{8\pi} \sigma_{TT}(\nu)$
- Low Energy Theorem: Re  $S_1(\nu) = -\frac{e^2 \kappa^2}{8\pi M^2} \nu$
- Unsubstracted Dispersion Relation: assumption is convergence of the dispersion integral.

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha (\frac{\kappa}{M})^2$$



# **Preliminary Target Polarization**

**Jefferson Lab** 



Spin Structure at Long Distance – p.28/31

# Spin Exchange Optical Pumping



<sup>3</sup>He nucleus is polarized via spin-exchange with optically pumped Rb atoms.



Spin Structure at Long Distance – p.29/31

# <sup>3</sup>He Elastic Asymmetry

- Monte Carlo prediction: 1.390%
- Preliminary data analysis: (1.403  $\pm$  0.044)% (stat. only)  $\chi^2/N_{
  m dof}$  = 1.08.
- Four target and beam configurations

**Jefferson Lab** 

 For seven out of the twelve beam energies, elastic data were acquired.



## **Cross Section Differences**





Spin Structure at Long Distance – p.31/31

# **Cross Section Differences**



Spin Structure at Long Distance – p.31/31