Spin sum rules and the strong coupling constant at large distances

A. Deur Thomas Jefferson National Accelerator Facility

Moments of spin structure functions and spin sum rules

Nth-moments:
$$\left\{ \begin{array}{l} \int_{g_{1}x^{n-1}dx}^{g_{1}x^{n-1}dx} & \text{First moments: } \Gamma_{1}, \ \Gamma_{2} \\ *\Gamma_{1}^{N}: \left\{ \begin{array}{l} \text{Ellis-Jaffe sum rule (large Q^{2})} \\ \text{Gerasimov-Drell-Hearn (GDH) sum rule (Q^{2}=0)} \\ *\Gamma_{1}^{P-n}: \text{Bjorken sum rule (large Q^{2})} \\ *\Gamma_{2}^{N}: \text{Burkhardt-Cottingham (BC) sum rule (any Q^{2})} \\ *d_{2} \text{ "sum rule"} \\ *\text{Spin polarizability sum rules} \end{array} \right\} \text{No low-x extrapolation}$$

A. Deur, Spin Structure at Long Distance. Jlab, March 09

Moments of spin structure functions and spin sum rules

Nth-moments:
$$\begin{cases} \int_{g_1}^{g_1 x^{n-1} dx} & \text{First moments: } \Gamma_1, \ \Gamma_2 \\ * \Gamma_1^{N}: \begin{cases} \text{Ellis-Jaffe sum rule (large Q^2)} \\ \text{Gerasimov-Drell-Hearn (GDH) sum rule (Q^2=0)} \\ * \Gamma_1^{P^{-n}:} \text{Bjorken sum rule (large Q^2)} \\ * \Gamma_2^{N}: \text{Burkhardt-Cottingham (BC) sum rule (any Q^2)} \\ * d_2^{n} \text{ sum rule}^{n} \\ * \text{Spin polarizability sum rules} \end{cases} No low-x extrapolation$$

A. Deur, Spin Structure at Long Distance. Jlab, March 09

The generalized Bjorken Sum Rules

Fundamental test of the pQCD Q²-evolution and OPE in the spin sector

Individual nucleon:

$$\int g_1^N dx = (\pm 12g_A + \frac{a_g}{36})(1 - \frac{\alpha_s}{\pi} - 3.58(\frac{\alpha_s}{\pi})^2 - ...) + \frac{a_0}{9}(1 - \frac{\alpha_s}{\pi} - 1.10(\frac{\alpha_s}{\pi})^2 - ...) + \text{Higher Twists}$$

Octet axial charge

(Assuming SU(3) symmetry and no strange quark polarization leads to the (violated) Ellis-Jaffe sum rule)

Here: $\overline{\text{MS}}$ (no gluon contribution to Γ_1) and a_0 is Q²-independent

Jefferson Lab

The generalized Gerasimov-Drell-Hearn sum

<u>Original GDH sum rule $(Q^2 = 0)$:</u>

$$\int_{v_{\text{thr}}}^{\infty} (\sigma_{A} - \sigma_{P}) \frac{dv}{v} = \frac{-4\alpha\pi^{2}S\kappa^{2}}{M^{2}}$$

 σ_{A}, σ_{P} : photoproduction cross sections κ : anomalous magnetic moment S: Spin

<u>Generalized GDH sum: $Q^2 > 0$:</u>

photoproduction \rightarrow electroproduction $\sigma_A^- \sigma_P^- = f(g_1, g_2)$ One possible generalization: $\begin{array}{c} \underline{8} \\ Q^2 \\ \end{array} \int g_1 dx = S_1(0, Q^2) \\ S_1(v, Q^2) \\ \end{array}$ (Ji and Osborne, 1999) $S_1(v, Q^2) \\ \end{array}$: spin dependent Compton amplitude Connection allows to study the pQCD sum rules at low Q^2.

Jefferson Lab

A. Deur, Spin Structure at Long Distance. Jlab, March 09

A. Deur, Spin Structure at Long Distance. Jlab, March 09

Jefferson Lab

Jefferson Lab

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

Longitudinal-Transverse polarizability:

Jefferson Lab

A. Deur, Spin Structure at Long Distance. Jlab, March 09

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

Longitudinal-Transverse polarizability:

A. Deur, Spin Structure at Long Distance. Jlab, March 09

For Neutron

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

Longitudinal-Transverse polarizability:

A. Deur, Spin Structure at Long Distance. Jlab, March 09

For Neutron

Jefferson Lab

Jefferson Lab

Models (MAID, Burkert-Ioffe, Soffer-Teryaev) are generally doing very well

Spin structure studies in the pQCD \rightarrow npQCD transition region

Smooth transition, nothing special happens near $\Lambda_{_{\rm OCD}}^{2}$.

JLab Halls A&B results:

 \Rightarrow Can be used to define a QCD effective coupling at large distance.

The strong coupling constant from pQCD

The strong coupling constant from pQCD

 $\alpha_{s}(Q)$ is well defined in pQCD at large Q². Can be extracted from data (e.g. Bjorken Sum Rule).

$$\int g_{1}^{p} - g_{1}^{n} dx = \frac{1}{6} g_{A} \left(1 - \frac{\alpha_{s}}{\pi} - 3.58\left(\frac{\alpha_{s}}{\pi}\right)^{2} - ...\right)$$

The strong coupling constant from pQCD

Definition of effective QCD couplings

G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Prescription:

Define effective couplings from a perturbative series truncated to the first term in α_s .

Generalized Bjorken sum rule:

$$\int g_{1}^{p} - g_{1}^{n} dx = \Gamma_{1}^{p-n} = \frac{1}{6} g_{A} (1 - \frac{\alpha_{s}}{\pi} - 3.58(\frac{\alpha_{s}}{\pi})^{2} - ...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4f_{2}(\alpha_{s})] + ...$$

$$\Rightarrow \Gamma_1^{p-n} \triangleq \frac{1}{6} g_A(1 - \frac{\alpha_{s,g1}}{\pi}) \qquad \alpha_{g_A} \triangleq \alpha_{g_A}$$

$$\alpha_{s,g1} \cong \alpha_s^{eff}$$
 extracted from Γ_1^{p-n}

By doing so we obtain a coupling constant that is:

•Extractable at any Q².

•Free of divergence.

Not renormalization scheme dependent.

•Analytic when crossing quark thresholds.

But that is:

Process dependent

⇒There is a priori a different α_s^{eff} for each different process.

<u>However</u> these α_s^{eff} can be related, so they are not useless quantities.

"Commensurate

scale relations"

S.J. Brodsky & H.J Lu, PRD 51 3652 (1995)

S.J. Brodsky, G.T. Gabadadze, A.L. Kataev, H.J Lu, PLB 372 133 (1996)

Advantages of extracting $\alpha_{s,g1}$ from the Bjorken Sum Rule

• Bjorken sum: simple Q²-dependence.

•Data exist at low, intermediate, and high Q².

•Sum rules (generalized GDH and Bjorken sum rules) complement the data in the unmeasured regions $Q^2 \rightarrow 0$ and $Q^2 \rightarrow \infty$.

⇒We can obtain $\alpha_{s,g1}$ at any Q².

•Coherent contribution partly suppressed in the Bjorken sum. \Rightarrow Definition of $\alpha_{s,g1}$ may be closest to α_{s}^{PQCD} definition ? Argument is stronger if global duality works (excluding the Δ and the elastic contributions).

$\alpha_{s,g1}$ from the Bjorken Sum data

A. Deur, Spin Structure at Long Distance. Jlab, March 09

Low **Q**² limit

Bjorken and Gerasimov-Drell-Hearn sums are related:

 $\Rightarrow Q^{2} = 0 \text{ constraints:}$ $\Gamma_{1}^{\text{p-n}} = \frac{Q^{2}}{16\alpha\pi^{2}} \text{ (GDH^{p}-GDH^{n})}$

First experimental evidence of *conformal behavior* (i.e. no Q²-dependence) of α_{s} at low Q².

 \Rightarrow We know $\alpha_{s,g1}$ at any Q².

 $\frac{1}{\alpha} (\widetilde{O})^{S}_{\alpha} 0.9$

0.7

0.6 0.5

0.4

0.3

0.2

0.1

10⁻¹

0.09 0.08 0.07 0.06 ☆

A. Deur, Spin Structure at Long Distance. Jlab, March 09

"Comparison" with theory

Q(GeV)

Jefferson Lab

a'/π

1

10

1

-1 10

 10^{-1}

 $\alpha_{s,gl}/\pi JLab$

Furui & Nakajima

 $10^{-\overline{l}}$

1

Fit

Cornwall

Fischer et a

1

A. Deur, Spin Structure at Long Distance. Jlab, March 09

Furui & Nakajima: Lattice

"Comparison" with theory

$\alpha_{s,g1}$ and the AdS/CFT correspondance

Anti de Sitter/ Conformal Field Theory correspondence (AdS/CFT, or Maldacena duality):

Anti de Sitter space: ~Space with constant negative curvature.

Conformal Field Theory: ~Field theory without scale dependence.

Correspondence: a weakly interactive, gravity-like, theory in N-dimentional anti de Sitter space can be mapped on the boundary of the anti de Sitter space (⇒N-1 dim.) into a strongly interacting, QCD-like, conformal field theory.

$\alpha_{s,g1}$ and the AdS/CFT correspondance

Important fact: Strong force is conformal at low Q^2 .

⇒New possibilities of QCD analytical calculations in non-perturbative domain (S. J. Brodsky, G. de Teramond,...)

PRL 94 201601 (2005); PRL 96 201601(2006)

Conclusions

•Data on SSF moments at low Q^2 and XpT do not consistently agree (or disagree). • Δ cannot be the explanation for some disagreement.

Low-Q² fits provide a quantitative comparisons. Importance of Q⁶ terms.
Need high precision data at lower Q². Transverse data on proton is especially missing. New experiments are fulfilling these needs:

E97110: \parallel and \perp on neutron (ran in 2003 in Hall A) EG4: \parallel on proton and deuteron (ran in 2006 in Hall B) E08027: \parallel and \perp on proton (approved for Hall A) Possibility for \perp data on P and D in Hall B is opening (Hdice target)

Effective QCD couplings can be defined over the whole Q² domain.
Bjorken Sum is advantageous to define an effective coupling.
Data and Sum rules allow to obtain the effective coupling at all Q².
Comparison with low-Q² calculation shows similar features, same Q²-dependence and similar size. In particular α_s "freezes" at low Q².
QCD conformal at low Q² ⇒ Application of AdS/CFT correspondence to non-perturbative QCD.

Jefferson Lab

Conclusions

•Data on SSF moments at low Q^2 and XpT do not consistently agree (or disagree).

• Δ cannot be the explanation for some disagreement.

•Low- Q^2 fits provide a quantitative comparisons. Importance of Q^6 terms.

•Need high precision data at lower Q². Transverse data on proton is

especially missing. New experiments are fulfilling these needs:

E97110: \parallel and \perp on neutron (ran in 2003 in Hall A)EG4: \parallel on proton and deuteron (ran in 2006 in Hall B)E08027: \parallel and \perp on proton (approved for Hall A)

Possibility for \perp data on P and D in Hall B is opening (Hdice target)

Effective QCD couplings can be defined over the whole Q² domain.
Bjorken Sum is advantageous to define an effective coupling.
Data and Sum rules allow to obtain the effective coupling at all Q².
Comparison with low-Q² calculation shows similar features, same Q²-dependence and similar size. In particular α_s "freezes" at low Q².
QCD conformal at low Q² ⇒ Application of AdS/CFT correspondence to non-perturbative QCD.

Jefferson Lab

 $\alpha_{s,g1}(\mathbf{d})$

