The JLab/CLAS EG4 Experiment

Xiaochao Zheng University of Virginia March 13, 2009

- The EG4 Experiment overview
- EG4 inclusive channel analysis status
- EG4 exclusive channel analysis status
- Summary

Acknowledgment:

EG4 spokespeople: M. Battaglieri, R. De Vita, A. Deur, G. Dodge, M. Ripani, K. Slifer EG4 Ph.D. students: K. Adhikari, H. Kang, K. Kovacs Exclusive analysis CAA co-spokespeople: A. Biselli, P.E. Bosted, G. Dodge Exclusive analysis CAA Review committee: D. Carman, P. Eugenio, C. Smith, M. Ungaro Other members from the EG1a and EG2000 collaborations

MUNIVERSITY of VIRGINIA

Introduction

The CLAS/EG4 experiment focused on measurement of the generalized GDH sums for p and n (D) at very low Q² (0.01-0.5 GeV²):

• Method: Extract helicity-dependent inclusive cross sections, then extract g_{i} ;

$$\frac{d \, \sigma^{\rightarrow \leftarrow}}{d \, \Omega \, dE'} - \frac{d \, \sigma^{\rightarrow \rightarrow}}{d \, \Omega \, dE'} = \frac{4 \, \alpha^2 \, E'^2}{ME \, \nu \, Q^2} \Big[(E - E' \cos \theta) g_1(x, Q^2) - 2 \, M \, x \, g_2(x, Q^2) \Big]$$

$$\boxed{WIVERSITY} \quad VIRGINIA \qquad X. Zheng, March 2009, Spin Structure at Long Distance and Complexity of Virginia and$$

EG4 Run Features

- Longitudinally polarized CLAS NH₃ and ND₃ targets at -1m w.r.t. CLAS center;
- New Cherenkov detector (INFN-Genova) in sector 6 for detecting small angle scatterings down to 6° with uniform and high efficiencies;
- Low (1-3 GeV) beam energy, outbending torus field.

UNIVERSITY of VIRGINIA

EG4 Kinematic Coverage

Extensive running at 1.3 GeV.

UNIVERSITY / VIRGINIA

EG1b Kinematic Coverage (for comparison)

MUNIVERSITY / VIRGINIA

EG4 Run Overview

- Ran in Jan.-April, 2006
- New Cerenkov in Sector 6 built in the main trigger (~90% of events)

Beam, target spin reversed nearly half-way for most of energies.

Calibration and General Tasks Status

Calibration tasks	People in charge	Status
Drift Chamber	K. Slifer	Complete
	M. Ripani, K. Michaelson, A. Vlassov, E.	
Cherenkov Detector (CC)	Golovach, J. Langheinrich, R. De Vita	Complete
Time-of-Flight (ToF)	M. Ripani, J. Santoro, R. De Vita	Complete
Faraday-cup	P. Konczykowski, A. Deur	Complete
Electromagnetic Calorimeter timing	R. De Vita, K. Adhikari	Complete

Analysis tasks	People in charge	Status	
Cooking	R. De Vita	pass1 complete	
CC Osipenko cuts and efficiencies	X. Zheng, H. Kang	Underway	
Radiation Length	P. Konczykowski, A. Deur	Complete	
Proton Polarimetry	H. Kang	Underway	
Deuteron Polarimetry	K. Kovacs, K. Slifer	Underway	
Beam parameters	K. Kovacs, M. Ripani	Underway	
Beam charge asymmetry	H. Kang	Underway	
DC performance	M. Ungaro, M. Ripani	Underway	
Simulations	V. Drozdov, M. Ripani	Underway	
Raster corrections	K. Adhikari, P. Bosted, S. Kuhn	Complete	
Momentum corrections	K. Adhikari, P. Bosted, S. Kuhn	Underway	

UNIVERSITY / VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 7/35

Calibration and General Tasks Status

Calibration tasks	People in charge	Status
Drift Chamber	K. Slifer	Complete
	M. Ripani, K. Michaelson, A. Vlassov, E.	
Cherenkov Detector (CC)	Golovach, J. Langheinrich, R. De Vita	Complete
Time-of-Flight (ToF)	M. Ripani, J. Santoro, R. De Vita	Complete
Faraday-cup	P. Konczykowski, A. Deur	Complete
Electromagnetic Calorimeter timing	R. De Vita, K. Adhikari	Complete

Analysis tasks	People in charge	Status
Cooking	R. De Vita	pass1 complete
 CC Osipenko cuts and efficiencies 	X. Zheng, H. Kang	Underway
Radiation Length	P. Konczykowski, A. Deur	Complete
 Proton Polarimetry 	H. Kang	Underway
Deuteron Polarimetry	K. Kovacs, K. Slifer	Underway
Beam parameters	K. Kovacs, M. Ripani	Underway
Beam charge asymmetry	H. Kang	Underway
DC performance	M. Ungaro, M. Ripani	Underway
Simulations	V. Drozdov, M. Ripani	Underway
Raster corrections	K. Adhikari, P. Bosted, S. Kuhn	Complete
Momentum corrections	K. Adhikari, P. Bosted, S. Kuhn	Underway

UNIVERSITY / VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 8/35

CC Performance

- New Cherenkov detector features nearly-uniform efficiency within limited ϕ range (±10°)
- ➡ Fiducial cuts on sector 6 CC θ and φ in the projected PMT plane, study still underway (H. Kang)
 The in φ we θ and φ in the projected PMT plane, study still a sendidates

UNIVERSITY of VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 9/35

Electron Selection

Use timing ("Osipenko") cuts to define electrons; Efficiency study underway (H. Kang);

Proton Elastic PbPt (H. Kang's work – Seoul U.)

- E=3.0 GeV NH3 data, using elastic e-p events to extract PbPt;
- Preliminary results agree with Moller (Pb=80%) and target NMR (Pt=75-76%).

Momentum Corrections (K. Adhikari, S. Kuhn)

Use elastic events assuming angles are correctly detected:

 electron correction completed, pion correction underway (for exclusive analysis)

Expected Results from EG4 vs. EG1b

Improvement (compared with EG1b) even better for ND3

UNIVERSITY of VIRGINIA

Physics Topics

K. Adhikari	Ph.D. student (ODU)	Neutron inclusive analysis
H. Kang	Ph.D. student (Seoul U)	Proton inclusive analysis
K. Kovacs	Ph.D. student (UVa)	Deutron inclusive analysis
R. Subedi, X. Zheng	UVa	π^+ , π^- exclusive analysis
A. Biselli	Fairfield U.	$\pi^{\scriptscriptstyle 0}$ exclusive analysis

Observables in Pion Electroproduction

Single-target $A_{t} = \frac{d\sigma_{t}}{d\sigma_{unp}} = \frac{\sigma(+h_{N}) - \sigma(-h_{N})}{\sigma(+h_{N}) + \sigma(-h_{N})}$ Only accessible from polarized target data

$$A_{et} = \frac{d\sigma_{et}}{d\sigma_{unp}} = \frac{\sigma(+h_{e}, +h_{N}) + \sigma(-h_{e}, -h_{N}) - \sigma(+h_{e}, -h_{N}) - \sigma(-h_{e}, +h_{N})}{\sigma(+h_{e}, +h_{N}) + \sigma(-h_{e}, -h_{N}) + \sigma(+h_{e}, -h_{N}) + \sigma(-h_{e}, +h_{N})}$$

UNIVERSITY of VIRGINIA

Exclusive Channel Analysis Physics Motivation

- Nucleon resonances study;
 - Mostly non-perturbative, cannot use pQCD;
 - Too light for lattice calculation;
- Must use effective theories or models:
 - Constituent Quark Model: resonance amplitudes, helicity structure... (not on interference terms)
 - Phenomenology models: MAID, SAID, DMT, JANR, Sato-Lee (Δ)
 - + May compare to Chiral Perturbation Theory (very low Q^2 only).
- Spin observables (asymmetries) provide constraints on: spin-dependent amplitudes, interference terms...

EG4 Exclusive Channel Analysis

- Extract A_{t} and A_{et} from EG4 data for:
 - NH3 target: $\vec{e} \ \vec{p} \rightarrow e' \pi^{+} n$ and $\vec{e} \ \vec{p} \rightarrow e' \pi^{0} p$ • ND3 target: $\vec{e} \ \vec{n} \rightarrow e' \pi^{-} p$ and $\vec{e} \ \vec{p} \rightarrow e' \pi^{0} n$
- Study dependence on Q^2 , W, ϕ^* and $\cos\theta^*$ (binned in 4 simultaneously)
- $\int A_e \sin \phi d\phi$ were extracted to check the beam $\lambda/2$ status for each run;
- Previous/other analyses: EG1a, EG1b;
- Our new results will:
- + help to constrain models and chiral perturbation theory at low Q^2 ;
- Can compare to real photon experiment (FROST or HDice), study transition from virtual to real photons;
 - Data on the neutron are rare.

Analysis Status and Very Preliminary Results for $\vec{e} \, \vec{p} \rightarrow e' \pi^+ n$ using 3 GeV NH3 Data

Electron Selection

(e,<mark>e'</mark>π⁺)n

Use Osipenko cuts to define electrons; shared with inclusive analysis, efficiency

Pion Selection and Mx Cut

UNIVERSITY / VIRGINIA

Dilutions

Dilution factor measures fraction of events from polarized nucleons (p in NH3 and D in ND3)

In the following, will scale model by 0.2 to compare with data

UNIVERSITY of VIRGINIA

UNIVERSITY / VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 23/35

Q² bins

Overview of Data for all Beam Energies

Eb	Target	# of runs with (beam,target)		# of (e,e'π+)n	DC sector	Will		
(GeV)		(-1,-1)	(-1,1)	(1,-1)	(1,1)	evnts per run	status	analyze
1.05	long NH3	19	69	32	34	5k	sec 1,4,5 off	
1.34	long NH3	19	46	20	36	17k	3/4 runs had 1,4,5 off	At, Aet
	short NH3	0	26	0	28	14k	some had all sec on	
2.00	long NH3	20	12	3	30	20k	all sec on	At, Aet
2.25	long NH3	10	8	8	16	20k	1/3 runs had 1,4,5 off, all	At, Aet
	short NH3	5	11	5	9	38k	had 5 off	At, Aet
3.00	long NH3	21	33	16	31	22k	all had sec 5 off	At, Aet
1.34	long ND3	0	65	0	50		all sec on	Aet
2.00	long ND3	0	118	0	122		all sec on	Aet

Cannot study ϕ^* -dependence Rely on ϕ^* integrations of *Ae*, *At* being zero.

UNIVERSITY of VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 31/35

MIVERSITY / VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 32/35

Summary (3rd last slide)

- EG4 will provide data to
 - + Extract the proton and the neutron GDH sums at very low Q^2 ;
 - Extract pion electroproduction asymmetries At and Aet;
 - Both will compare to Chiral Perturbation Theory calculations.
- Analysis well underway and preliminary exclusive channel asymmetry results from the 3GeV NH3 data are very promising;
- Stay tuned for our new results!

CLAS/EG4 vs. Hall A/SAGDH Kinematic Coverage

Hall B(CLAS) EG4 NH₃ (proton)

Hall A E97-110 Polarized ³He (neutron)

UNIVERSITY / VIRGINIA

CLAS/EG4 vs. Hall A/SAGDH Expected Inclusive Channel Results

+ Can combine Γ_{1}^{p} and Γ_{1}^{n} to form the Bjorken sum (see next talk).

UNIVERSITY of VIRGINIA

Back-up Slides

UNIVERSITY of VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 37/35

Physics Motivation (cont.)

Example: Roper P₁₁(1440) -- Least understood and most controversial

• Sensitivity of Aet ($n\pi^+$) to P₁₁(1440):

Physics Motivation (cont.)

• Sensitivity of At ($n\pi^+$) to P₁₁(1440):

UNIVERSITY / VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 39/35

Physics Motivation (cont.)

• Sensitivity of At ($p\pi^0$) to P₁₁(1440):

Spin observables may help to remove some model dependence in extraction of amplitudes -> better determination of the nature of $P_{11}(1440)$.

Radiation Length Study (by P. Konczykowski)

E = 1.34 GeVBeam current loss (%) 6.0 8.0 8.0 8.0 8.0 8.0 8.0 Simulation: FCup radius=6,8 fcup/SLM 0 || 0 0 ≙ fcup/C21A Empty no He fcup/C24A Empty w/He Thin C no He fcup/CH01 Δ Thin C no He A 0 Short NH3 Thick C no He 0.8 Thick C w/He -ong NH3 w/He 0.75 0.7 0.005 0.015 0.025 0.01 0.02 **Radiation length**

UNIVERSITY of VIRGINIA

X. Zheng, March 2009, Spin Structure at Long Distance 41/35

Simulations (V. Drozdov and M. Ripani)

 $E = 1.339 \text{ GeV}, \text{NH}_3 \text{ data (using 0.6 packing factor)}$

 $Q^2 = 0.03 - 0.04 \, GeV^2$

 $Q^2 = 0.06 - 0.07 \, GeV^2$

 $Q^2 = 0.12 - 0.13 GeV^2$

UNIVERSITY of VIRGINIA