Nucleon Spin Structure at low energies

Hermann Krebs

FZ Jülich & Universität Bonn

Spin Structure Workshop March 13, 2009, JLab, USA

With V. Bernard, E. Epelbaum, M. Dorati, U. Meißner

Outline

- ChPT and low energy QCD
- Nucleon spin structure and sum rules
- \bullet V²CS within ChPT and the role of Δ -isobar
- Δ-isobar in ChPT
- Preliminary results for polarizabilities
- Summary & Outlook

ChPT and low energy QCD

Spontaneous + explicit (by small quark masses) breaking of chiral symmetry in QCD

Existence of light weakly interacting Goldstone bosons

Chiral Perturbation theory (ChPT)

Expansion in small momenta and masses of Goldstone bosons

Systematic description of QCD by ChPT in low energy sector (low momenta $q \ll \Lambda_\chi \simeq 1\,{
m GeV}$)

Nucleon spin structure and sum rules

Spin-dependent forward Compton-Amplitude (V²CS)

$$\frac{1}{4\pi} \int d^4x e^{iq\cdot x} \langle PS|TJ^{\mu}(x)J^{\nu}(0)|PS\rangle = -i\epsilon^{\mu\nu\alpha\beta} q_{\alpha} \left[S_{\beta}S_1(\nu,Q^2) + (M\nu S_{\beta} - S \cdot qP_{\beta})S_2(\nu,Q^2) \right]$$

 $S_1(\nu,Q^2)$ and $S_2(\nu,Q^2)$ related to spin-structure functions g_1 and g_2

 $m{ ilde{J}}$ u - Expansion at low energies of reduced amplitudes $ar{S}_1(
u,Q^2)$ and $ar{S}_2(
u,Q^2)$

$$\bar{S}_{12}(\nu, Q^2) = S_{12}(\nu, Q^2) - S_{12}^{\text{elastic}}(\nu, Q^2)$$

Generalized Gerasimov-Drell-Hearn (GDH) sum rule

$$\bar{S}_1^{(0)}(0,Q^2) = 4e^2 \int_{\nu_0}^{\infty} d\nu \frac{G_1(\nu,Q^2)}{\nu} = \frac{4e^2}{m^2} I_1(Q^2) \quad \text{Ji, Osborne '00}$$

Two different limits

$$I_1(Q^2) = -rac{1}{4}\kappa^2$$
 GDH S.R.

$$I_1(Q^2) = rac{2m^2}{Q^2} {
m const}$$
 Ellis-Jaffe S.R.

ChPT calculations of V²CS up to q⁴

 $m{J}_{12}^{(i)}(0,Q^2)$ for low virtualities calculated within ChPT

HBChPT: Ji, Kao, Osborne, Spitzenberg, Vanderhaeghen, Birse, McGovern, Kumar

Expansion of amplitude in one over nucleon mass

IRChPT: Bernard, Hemmert, Meißner

Systematic resumation of one over nucleon mass contributions

Contributions up to $O(q^4)$

- **⚠** All tree diagrams with insertion from $\mathcal{L}_{\pi N}^{(i)}$, i = 1, 2, 3, 4
- $m{\square}$ All loop diagrams with insertion from at most $\mathcal{L}_{\pi N}^{(2)}$
- Two well known low energy constants: $c_6 \& c_7 \longleftrightarrow \kappa_p \& \kappa_n$
- Elastic contributions to $S_{12}^{(i)}(0,Q^2)$ subtracted

Validity range of IRChPT

Change in integral boundaries of Feynman-parameter integration

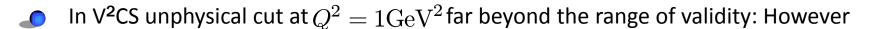
Two-point function examplified

$$H(Q^2) = \frac{1}{i} \int \frac{d^dl}{(2\pi)^d} \frac{1}{l^2 - M_\pi^2} \frac{1}{(l+q)^2 - m^2} = \frac{1}{i} \int \frac{d^dl}{(2\pi)^d} \int_0^1 dz \frac{1}{[(1-z)(l^2 - M_\pi^2) + z((l+q)^2 - m^2)]^2}$$

$$H(Q^2) = \int_0^\infty dz \dots - \int_1^\infty dz \dots = I - R \quad \text{Becher, Leutwyler '99}$$

Change in integral boundaries \longrightarrow Unphysical cuts at finite Q^2

Restriction in range of Q^2

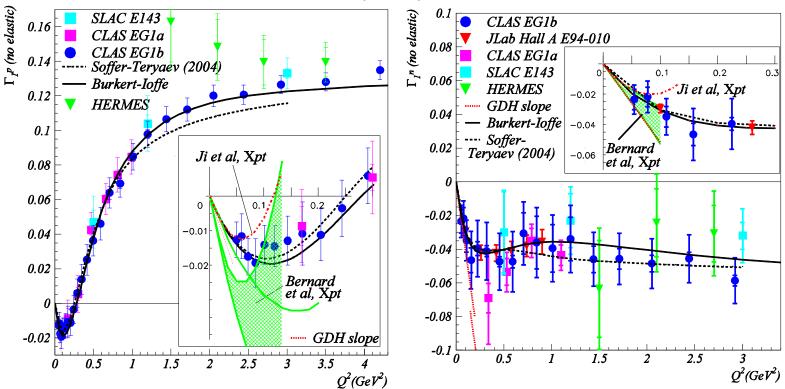


Calculations of derivatives of loop functions

Effects at $Q^2 \sim 0.2 - 0.5 {
m GeV}^2$

Numerical Results

First moment $\Gamma_1(Q^2)=rac{Q^2}{2m^2}I_1(Q^2)$ for proton and neutron



- $m{O}$ Reasonable agreement of IRChPT results with data at $Q^2=0.05-0.1 {
 m GeV}^2$
- Inclusion of the Δ and vector meson makes the agreement worse. However this is just an estimate: systematic ϵ^3 calculation needed

Generalized spin-polarizabilities

Bernard, Hemmert, Meißner '03

$$lacksquare$$
 Forward spin polarizabilities at $Q^2=0$: $\gamma_0(Q^2)=rac{1}{8\pi}\left(ar{S}_1^{(2)}(0,Q^2)-rac{Q^2}{m}ar{S}_2^{(3)}(0,Q^2)
ight)$

Chiral expansion
$$\mu = \frac{M_{\pi}}{m}$$

- Poor convergence of γ_0^p due to large prefactors $\sim \kappa_v \simeq 3.7$
- **●** Much better convergence of γ_0^n

$$\gamma_0^n = 4.45 - 5.25 + 2.00 + 0.68 + O(\mu^2) = 1.82$$

$$O(\mu^{-2}) O(\mu^{-1}) O(\mu^0) O(\mu^1)$$

$$\gamma_0^p = 4.45 - 8.31 + 6.03 + 3.22 + O(\mu^2) = 4.64$$

$$O(\mu^{-2}) O(\mu^{-1}) O(\mu^0) O(\mu^1)$$

$$ullet$$
 Longit.-transv. spin-polarizabilities at $Q^2=0$: $\delta_0(Q^2)=rac{1}{8\pi}\left(ar S_1^{(2)}(0,Q^2)+rac{1}{m}ar S_2^{(1)}(0,Q^2)
ight)$

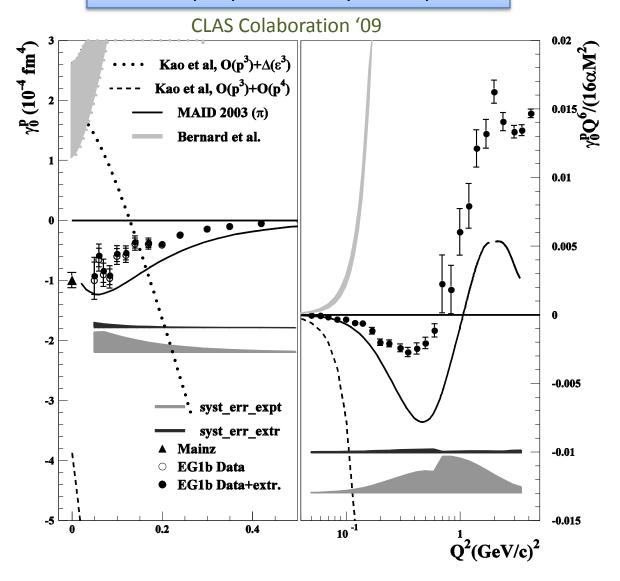
- ullet Well behaved chiral expansion of $\delta_0^{p,n}$
- No large prefactors in $\delta_0^{p,n}$

$$\begin{split} \delta_0^n &= 2.23 + 0.93 - 0.26 - 0.24 + O(\mu^2) = 2.66 \\ O(\mu^{-2}) \ O(\mu^{-1}) \ O(\mu^0) \ O(\mu^1) \\ \delta_0^p &= 2.23 - 0.75 + 0.53 + 0.12 + O(\mu^2) = 2.04 \\ O(\mu^{-2}) \ O(\mu^{-1}) \ O(\mu^0) \ O(\mu^1) \end{split}$$

All numbers given in 10^{-4} fm⁴

Generalized spin-polarizabilities

Forward spin-polarizability of the proton



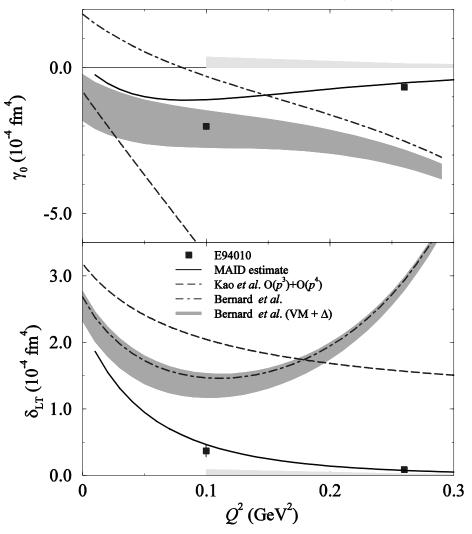
IRChPT contributions

- ullet Positive chiral loop contr. increasing with Q^2
- \triangle Born-graph contr. Is Negative and flat
- Serious disagreement with the data for γ_0^p
- ullet Hope for improvement From Δ loop-contr.

Generalized spin-polarizabilities

Spin-polarizabilities for the neutron

Bernard's review PPNP 60 (2008) 82



- $m{\circ}$ γ_0 is sensitive to Δ dof
- Nice agreement with exp. point at $Q^2 = 0.1 {
 m GeV}^2$

- $oldsymbol{\delta_{LT}}$ is insensitive to Δ dof
- Very well behaved chiral Expansion of δ_{LT} at $Q^2=0$
- Strong curvature due to unphysical cut in IR results
- Comparisons with exp. data at lower Q^2 are desirable

Theory with explicit △ dof

Small scale expansion (SSE) is a systematic inclusion of dof in ChPT Hemmert, Holstein, Kambor '98

Expansion in low momenta, pion-masses and nucleon-delta mass splitting

$$\Delta = m_{\Delta} - m$$

Two on mass-shell equivalent representations for covariant Δ - fields

Pascalutsa '01, H.K., Epelbaum, Meißner '08

All interactions are invariant under $\psi_{\mu} \to \psi_{\mu} + \partial_{\mu} \epsilon$ All interactions are Gauge-invariant

All interactions are Gauge-invariant

Gauge-invariance exact

But

Unphysical spin-1/2 contr. to be absorbed by LECs of higher order

We calculated V²CS up to third order with both methods to get an error-estimate of higher order effects

Calculation of SSE loops

Computational Effort Estimate

$$S^{\mu\nu}(p) = \frac{\not p + m}{p^2 - m^2} \left(-g^{\mu\nu} + \frac{1}{3} \gamma^{\mu} \gamma^{\nu} + \frac{1}{3m} (\gamma^{\mu} p^{\nu} - \gamma^{\nu} p^{\mu}) + \frac{2}{3m^2} p^{\mu} p^{\nu} \right)$$

More complicated Spin-structures

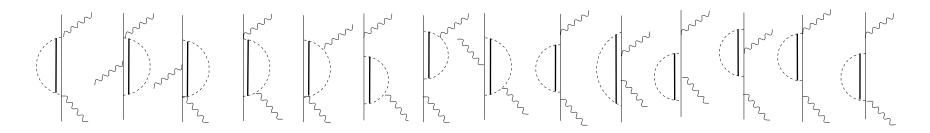
Automatization of calculation is necessary

Mathematica & FORM used for tensor reduction in current calc.

We developed our own code which is able to reduce tensor integrals of any rank in relativistic and Heavy Baryon formalism

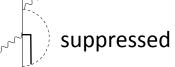
- FORM used to reduce tensor integrals to series of scalar integrals with higher power of propagators and shifted dimensions Davydychev '91
- Mathematica used for further Passarino-Veltman reduction

SSE calculation of V²CS



14 diagrams contribute to the order ϵ^3

 $\gamma N \Delta$ -vertex starts to contribute to the order ϵ^4 \longrightarrow Diagrams like



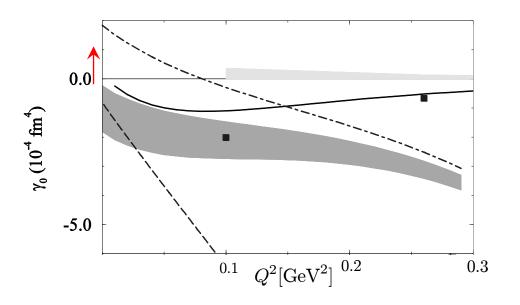
- Like in the nucleon case all ϵ^3 divergencies from loop-diagrams cancel
- No counter-term contributions to the spin-dependent part of V²CS
- For additional $\pi N\Delta$ coupling we use large N_c relation $h_A = \frac{3g_A}{2\sqrt{2}} \sim 1.34$
- We explicitly checked the amplitudes for gauge-invariance

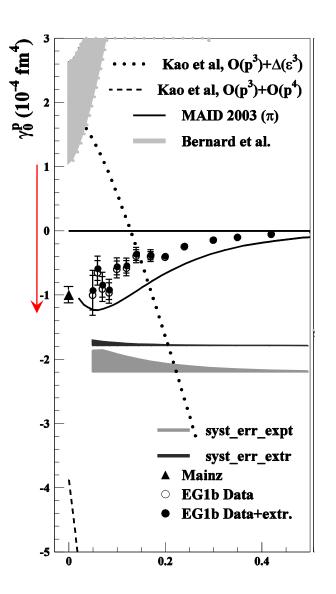
First numerical results

Preliminary

Generalized spin-polarizabilities at photon point $(\Delta$ - loop contributions in $10^{-4} {\rm fm}^4)$

Proton	Neutron
$\delta_{LT}^{p,\Delta-\mathrm{loop}} = -0.82$	$\delta_{LT}^{n,\Delta-\mathrm{loop}} = 0.02$
$\gamma_0^{p,\Delta-\mathrm{loop}} = -2.27$	$\gamma_0^{n,\Delta-\mathrm{loop}} = 1.31$





Summary

- Spin-structure functions analyzed within ChPT upto order q⁴
- No counterterms appear at this order ———— Parameterfree predictions
- Qualitative agreement between Theory & Experiment
- $oldsymbol{oldsymbol{\omega}}$ Systematic inclusion of $\,\Delta$ isobar for V²CS upto order $\,\epsilon^3$
- First promising preliminary results at photon point for gen. spin-polarizabilities

Outlook

- Recheck of the calc. and numerical studies at finite virtualities
- Looking forward to more data at low Q^2