► Gerasimov-Drell-Hearn sum rule

MAMI, ELSA, and LEGS data ($W < 3\,\mathrm{GeV}$) show that sum rule is fulfilled within error bar (< 10% for proton, < 20% for neutron).

► Gerasimov-Drell-Hearn sum rule MAMI, ELSA, and LEGS data (W < 3 GeV) show that sum rule is fulfilled within error bar (< 10% for proton, < 20% for</p>

neutron).

▶ Forward spin polarizability
Delicate cancelation of contributions from $\Delta(1232)$ excitation and pion S-wave production near threshold (-2+1=-1).
Published ChPT results scatter between -4 and 4.

- ► Gerasimov-Drell-Hearn sum rule MAMI, ELSA, and LEGS data (W < 3 GeV) show that sum rule is fulfilled within error bar (< 10% for proton, < 20% for neutron).
- Forward spin polarizability
 Delicate cancelation of contributions from Δ(1232) excitation and pion S-wave production near threshold (-2+1=-1).
 Published ChPT results scatter between -4 and 4.
- ► List of things desired

 Check whether the photon is "helicity blind" at 40 GeV.

► Gerasimov-Drell-Hearn sum rule

MAMI, ELSA, and LEGS data ($W < 3\,\text{GeV}$) show that sum rule is fulfilled within error bar (< 10% for proton, < 20% for neutron).

► Forward spin polarizability

Delicate cancelation of contributions from $\Delta(1232)$ excitation and pion S-wave production near threshold (-2+1=-1). Published ChPT results scatter between -4 and 4.

List of things desired

Check whether the photon is "helicity blind" at 40 GeV. Give quantitative information on nuclear contributions to helicity asymmetry of neutron targets, such as $\gamma+d\to p+n$ and $\gamma+d\to d+\pi^0$.

► Gerasimov-Drell-Hearn sum rule

MAMI, ELSA, and LEGS data ($W < 3\,\mathrm{GeV}$) show that sum rule is fulfilled within error bar (< 10% for proton, < 20% for neutron).

► Forward spin polarizability

Delicate cancelation of contributions from $\Delta(1232)$ excitation and pion S-wave production near threshold (-2+1=-1). Published ChPT results scatter between -4 and 4.

List of things desired

Check whether the photon is "helicity blind" at 40 GeV. Give quantitative information on nuclear contributions to helicity asymmetry of neutron targets, such as $\gamma+d\to p+n$ and $\gamma+d\to d+\pi^0.$

Evaluate higher polarizabilities and compare with MAID, SAID. Power series expansion of Compton amplitude about $\nu=0$.

Virtual Photons

► Spin structure at long distance

Unprecedented new precision data from Halls A, B, C, covering transverse and longitudinal polarization as well as proton and neutron targets over a wide range (0.01 $< Q^2 < 6\,\mathrm{GeV}^2$), $W < 3\,\mathrm{GeV}$. Soon available: complete information on the spin structure functions (g_1, g_2 or σ_{TT}, σ_{LT}).

Virtual Photons

► Spin structure at long distance

Unprecedented new precision data from Halls A, B, C, covering transverse and longitudinal polarization as well as proton and neutron targets over a wide range (0.01 $< Q^2 < 6\,\mathrm{GeV^2}$), $W < 3\,\mathrm{GeV}$. Soon available: complete information on the spin structure functions (g_1, g_2 or σ_{TT}, σ_{LT}).

▶ GDH-like integrals, I_1 and I_{TT}

Visualize the transition from "coherent" processes (resonances, meson cloud) to "incoherent" scattering off partons (DIS). Characterized by a rapid variation with Q^2 and a sign change at $Q^2\approx 0.2\,\mathrm{GeV}^2$ for the proton. Bridge the gap between GDH sum rule and Bjorken sum rule. ChPT: loops are functions of Q^2/m_π^2 , convergent up to which Q^2 value?

Combine ChPT and Lattice QCD (pion mass extrapolation, determination of LECs from QCD).

Virtual Photons, continued

▶ Burkhard-Cottingham sum rule, *l*₂
Fascinating prediction: integral over full excitation spectrum related to ground state properties at any given *Q*², i.e., at all distances. Spectacular data.

Virtual Photons, continued

▶ Burkhard-Cottingham sum rule, *l*₂

Fascinating prediction: integral over full excitation spectrum related to ground state properties at any given Q^2 , i.e., at all distances. Spectacular data.

▶ Spin polarizability γ_{TT}

Delicate cancelation between $\Delta(1232)$ and pion S-wave production near threshold.

Both contributions drop fast with Q^2 , but certainly not with same form factor. Delicacy more delicate.

Asymptotically rapid decrease like $1/Q^6$. Because of weight factor $1/\nu^3$, high energies contribute little.

Virtual Photons, continued

▶ Burkhard-Cottingham sum rule, I₂ Fascinating prediction: integral over full excitation spectrum related to ground state properties at any given Q², i.e., at all distances. Spectacular data.

- ▶ Spin polarizability γ_{TT} Delicate cancelation between $\Delta(1232)$ and pion S-wave production near threshold. Both contributions drop fast with Q^2 , but certainly not with same form factor. Delicacy more delicate. Asymptotically rapid decrease like $1/Q^6$. Because of weight factor $1/\nu^3$, high energies contribute little.
- ▶ Spin polarizability δ_{LT} $\Delta(1232)$ contribution suppressed by an order of magnitude, dominant term $S_{0^+}^*E_{0^+}$. Asymptotically rapid decrease like $1/Q^6$. Because of weight factor $1/\nu^3$, high energies contribute little. Why is this observable not well described by ChPT?

▶ Please provide proton data for the Q^2 dependence of BC sum rule and δ_{LT} (my personal request to Santa Claus this year).

- ▶ Please provide proton data for the Q^2 dependence of BC sum rule and δ_{LT} (my personal request to Santa Claus this year).
- ▶ Do not forget to publish information on "neutron targets" below pion threshold, nuclear physicists may love it.

- ▶ Please provide proton data for the Q^2 dependence of BC sum rule and δ_{LT} (my personal request to Santa Claus this year).
- ▶ Do not forget to publish information on "neutron targets" below pion threshold, nuclear physicists may love it.
- ► Evaluate higher polarizabilities, maybe also higher twists?

- ▶ Please provide proton data for the Q^2 dependence of BC sum rule and δ_{LT} (my personal request to Santa Claus this year).
- ▶ Do not forget to publish information on "neutron targets" below pion threshold, nuclear physicists may love it.
- Evaluate higher polarizabilities, maybe also higher twists?
- Dear members of CLAS: We want more of your precision data for single-pion electroproduction above 1.6 GeV.
 We are tired of fitting our phenomenological codes to the old DESY data.