d/u at pp colliders and relation to JLab

Ch. Weiss (JLab) [with M. Strikman (Penn State)] Spin Physics Workshop, JLab, Dec. 13–14, 2006

ullet Prospects for measuring d/u at large x in W^+/W^- production at $pp/\bar{p}p$ colliders

Sensitivity, rates, . . . LHC, Tevatron, RHIC

ullet Physics options in combining $\,d/u\,$ from JLab with $\,pp\,$ collider data

I) Hard processes in high-energy $pp/\bar{p}p$ collisions

$$x_{1,2} = \frac{M^2}{\sqrt{s}} e^{\pm y}$$

LHC	$\sqrt{s}=$ 14 TeV
Tevatron	1.8 TeV
RHIC	200/500 GeV

- Drell-Yan pairs (l^+l^-)
 - both l^+, l^- detectable
 - cross section drops as $\sim 1/M^4$
- W^+/W^- production $(l^+\nu_l, l^-\bar{\nu}_l)$
 - only $l^+(l^-)$ detectable
 - large cross section at ${\cal M}^2={\cal M}_W^2$
- QCD jets
 - can probe very high M^2 and $x \to 1$
 - no separation of quarks and gluons

Hard processes at LHC

LHC parton kinematics

- Rich program of "Standard Model processes" (beginning 2007), needed to determine parton luminosities
- Expected rates very high:
 200 W⁺/sec before cuts
 [see e.g.: J. Mnich, CMS CR 2004/043]
- Possible to reach $x \to 1$ in very high– Q^2 processes (jet production)

Q: Sensitivity to d/u at large x? Role of JLab large–x data?

Reminder: "Flow" of DGLAP evolution

DGLAP evolution relates

high
$$Q^2$$
, low x low Q^2 , high x

• Data at increasing Q^2 probe higher and higher x in input PDFs at Q_0^2 !

Probing d/u in W^+/W^- production in pp

$$\frac{\sigma(W^+)}{\sigma(W^-)} = \frac{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)}$$

Cross section ratio

• Check sensitivity to d/u at large x:

$$\frac{u(x)}{d(x)} \to \frac{u(x)}{d(x)} + \Delta(x)$$

[Melnitchouk, Thomas 96; M. & Peng 96]

d/u at large x: LHC

- Sensitivity to d/u at large x only at large rapidities $|y_W| > 4$ High rate. . . perhaps strong cuts allow for some signal?
- Excellent sensitivity to $u/d \quad \text{and} \quad \bar{u}/\bar{d} \quad \text{combined at}$ $x \sim 10^{-2}-10^{-3}, \quad Q^2=M_W^2$ DGLAP \updownarrow $x \sim 10^{-1}, \quad Q^2=\text{few GeV}^2$

Very precise PDF determination at $x \sim 10^{-1}$; large x unclear

d/u at large x: RHIC

[CW, preliminary]
[Melnitchouk, Peng 96]

- Good sensitivity to d/u at large x: $x_{1,2} = 0.16$ for $y_W = 0$
- Expected data sample in $800\,\mathrm{pb}^{-1}$: $\sim 100,000\,W^+,\ 30,000\,W^-$ [see e.g. hep-ph/0304002]

 $\begin{array}{c} \bullet \ \ \text{Detection of charged leptons} \\ 1.2 < |y_{\mu}| < 2.4 \quad \text{PHENIX} \\ |y_{e}| < 1 \quad \ \ \, \text{STAR} \\ \end{array}$

Unclear if coverage of present detectors sufficient for realistic study of d/u at large x

d/u at large x in $\bar{p}p$: Tevatron

[Melnitchouk, Peng 96]

CDF data (2005), $170 \,\mathrm{pb}^{-1}$

• "Forward–backward" asymmetry:

$$A = \frac{\sigma(W^+) - \sigma(W^-)}{\sigma(W^+) + \sigma(W^-)}$$

• Sensitivity to u/d at large x for $y_l \geq 3$

Limited detector acceptance and statistics seem to preclude extraction of u/d at large x

II) Combining d/u from JLab with collider data: Physics options

• Understand high– Q^2 jet data

DIS:
$$4 u + d$$

 qg jets: $u + d \leftarrow enhanced!$

CTEQ: Modified large-x gluon to explain Tevatron jet data

 $\dots d/u$ at large x would help to pin down large–x gluon density!

• "High-x QCD evolution:" Deviations from DGLAP

$$\log \left[Q^2 (1-x) \right] \ll \log Q^2$$

... could be tested in combination with very high– Q^2 jet data!

(Preliminary) Summary

ullet Accurate measurements of d/u at x>0.5 appear hardly possible at Tevatron and RHIC with present detectors

• LHC data promise to lead to completely new level of precision in PDF determination at "average" x (including $u/d, \ \bar{u}/\bar{d}$)

• Explore options in combining JLab d/u with collider data: Quark/gluon separation in high- Q^2 jets, large-x evolution

... Need to involve experts on global PDF fits!