Strangeness content of the nucleon: Theory overview

Ross Young

THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY

Workshop on Intersections of Nuclear Physics with Neutrinos and Electrons Jefferson Lab, 4-5 May 2006

Outline

- $\hfill\square$ Motivating the search for strangeness
- PVES and strange vector form factors
- Contamination from axial ff
- Lattice-inspired predictions for GMs & GEs
- Dramatic advances in PVES data

- Strange quarks contribute to nucleon structure!
- \Box No symmetry of QCD can deny them $\langle N' | \bar{s} \Gamma s | N \rangle \neq 0$
- Probing strangeness gives direct information on nonperturbative QCD
 - Quark dynamics distinguish the real world from pure Yang-Mills theory

Why strange?

Protons/neutrons carry light quarks

- Source of nonperturbative glue
 AND part of nonperturbative glue
- □ Strange quarks are ONLY in the glue

Strange Vector FFsParity-violating electron scattering (PVES)

 $\hfill \Box$ Interference between γ and Z probes

$$A^{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \left[\frac{-G_F Q^2}{\pi \alpha \sqrt{2}}\right] \frac{\varepsilon G_E^{p\gamma} G_E^{pZ} + \tau G_M^{p\gamma} G_M^{pZ} - \frac{1}{2}(1 - 4\sin^2\theta_W)\varepsilon' G_M^{p\gamma} \tilde{G}_A^p}{\varepsilon (G_E^{p\gamma})^2 + \tau (G_M^{p\gamma})^2}$$

$$4G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} + G_{E,M}^{s}$$

Strangeness

Axial FF in PVES

At tree level

$$\boldsymbol{G}_{A}^{p} = -\boldsymbol{G}_{A}^{(T=1)} - \boldsymbol{G}_{A}^{(s)}$$

□ Including radiative corrections $\tilde{G}_{A}^{p} = -(1 + R_{A}^{T=1})G_{A}^{(T=1)} + R_{A}^{T=0}G_{A}^{(8)} - (1 + R_{A}^{0})G_{A}^{(s)} + A_{ana}^{p}$ $G_{A}^{(T=1)} = 1.2695$ $G_{A}^{(8)} = 0.58 \pm 0.03 \pm 0.12$ $G_{A}^{(s)} = -0.07 \pm 0.04 \mp 0.05$ R_{A} : PDG R_{A} : PDG

The Anapole term

Musolf et al. Phys.Rept.(1994)

Estimate from ΕI Zhu et al. PRD(2000) Build EFT with PV meson-baryon couplings

Summing the result
Zhu et al. PRD(2000)
Determine chiral-loop contributions
Use VMD to constrain LECs
Best-estimates for poorly-known PV couplings
$h_{\pi}, \ h_{A}^{1}, \ h_{n\Sigma^{-}K}, \ h_{V}^{n\Sigma^{-}K^{+}}, \ h_{V}^{p\Sigma^{0}K^{+}}, \ h_{A}^{pK}, \ h_{A}^{nK}$
$h_{p\Lambda K},\ h_V^{p\Lambda K^+},\ h_{ m o}^1,\ h_{\omega}^0,\ h_{\phi}^0$
$h_A^2, h_V^0, h_V^2, h_\rho^0, h_\rho^2, h_\omega^1, h_\phi^1$
$A_{ana}^{T=1} = -0.11 \pm 0.44 \qquad A_{ana}^{T=0} = 0.02 \pm 0.26$

Strange FFs

Lattice-inspired theory calculation
 Leinweber, RDY et al. PRL(2005), hep-lat/0601025
 Charge symmetry constraints
 see Kubis & Lewis, nucl-th/0605006
 Quenched lattice simulation results
 Quantitative unquenching procedure

Charge Symmetry

$$3O_N = 2p + n - u^p$$

 $\Sigma^+ - \Sigma^- = u^{\Sigma}$

$$3O_N = 2p + n - \frac{u^p}{u^{\Sigma}} \Sigma^+ - \Sigma^-)$$

Lattice QCD

$$3O_{N} = p + 2n - u^{n}$$

$$\Xi^{0} - \Xi^{-} = u^{\Xi}$$

$$3O_{N} = p + 2n - \left(\frac{u^{n}}{u^{\Xi}}\right)(\Xi^{0} - \Xi^{-})$$

Constraint on GMs

u-quark in proton

u-quark in Sigma

 $G_M^s = -0.046 \pm 0.22 \,\mu_N$

Repeat for electric

 $G_E^s(Q^2=0.1)=+0.001\pm0.004\pm0.004$

Leinweber, RDY et al. hep-lat/0601025

Experimental Status World PVES data, with Axial theory result

 $Q^2 = 0.1 \,\mathrm{GeV}^2$

Global Analysis RDY et al. nucl-ex/0604010 All data for $Q^2 < 0.3 \, \text{GeV}^2$ Extract axial ff (anapole moment)

$$\tilde{G}_A^N = \tilde{g}_A^N (1 + Q^2 / \Lambda^2)^{-2}$$

$$G_E^s = \rho_s Q^2 + \rho'_s Q^4 + \dots$$

$$G_M^s = \mu_s + \mu'_s Q^2 + \dots$$

GMs-GEs

RDY et al. nucl-ex/0604010

Axial FF RDY et al. nucl-ex/0604010

Isoscalar anapole term potentially large: Large uncertainty

0.15 0.1 0.05 Theory, Leinweber et al. ${\overset{\circ}{\Omega}}_{{}^{\circ}}$ 0 **Global Analysis** (GO, PVA4, SAMPLE, + older HAPPEX data) -0.05 68% CL 95% CL -0.1 -0.15 -1.5 $G_M^{s}^{0.5}$ 1.5 -1 0 -0.5 1 2

Remarks

- Strangeness in the nucleon fascinating probe of nonperturbative QCD
- □ New precision in PVES is remarkable $\langle r^2 \rangle_E^p = 0.766 \pm 0.012 \, \text{fm}^2$ $\langle r^2 \rangle_E^s = 0.001 \pm 0.017 \, \text{fm}^2$
- Excellent agreement with state-of-the-art theory calculations
- Advanced understanding of nonpert. QCD

