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Introduction

• It has been know for a long time that in the few GeV energy region, the
quasi-elastic, few pion and inclusive contributions to the cross section
are nearly equal.Lipari, Lusignoli and Sartogo, 1995 made the standard plot

• All components important to understand neutrino oscillation experiments,
the balance of which depends on e.g., the minimum invariant mass of the
final hadronic state, W 2

min. Recent work by Kuzmin, Lyubushkin, Naumov,

hep-ph/0511308 attempts to find the Wmin so that the components best
represent current neutrino measurements.

• The inelastic component is not currently well calculated in this energy
regime because of the necessity of low-Q2 structure functions.
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• This talk is about extrapolations to low-Q2 of structure functions for
W 2 > W 2

min.

• I’ll assume local quark-hadron duality.

• Target mass corrections: work with Stefan Kretzer, Phys. Rev. D66 and
Phys. Rev. D 69.
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Plan

• Brief review neutrino scattering in NLO QCD with target mass corrections
(TMC) and the importance of the low-Q2 contribution to the cross
section.

• Comparison of NLO+TMC with a parameterization of F ep
2 . (NLO+TMC

overestimates F2 at low Q2.)

• The Capella, Kaidalov, Merino and Thanh Van (CKMT) parameterization
of F ep

2 and the Bodek-Yang-Park parameterization.

• The translation to νN scattering.
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• Reevaluated cross sections with these two extrapolations at low-Q2.

• Summary.
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Mass Corrections

Differential cross section (CC) m=muon mass, M=nucleon mass:
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TMC

TMC corrections come from:

• x → ξ with

1

ξ
=
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+

√

1

4x2
+

M2

Q2
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• A “mismatch” between quark momentum p and nucleon momentum P :
proton momentum P 2 = M2 and incident parton momentum p2 = 0,
then p+ = ξP+, but p− 6= ξP−.

• Including non-collinear partons in the nucleon, with kT < M . R.K. Ellis et

al.
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With the identifications:

ρ2 = 1 +
4M2x2

Q2

F2 = q(ξ, Q2) + q̄(ξ,Q2)

Georgi and Politzer [PRD 14 (1976)], Barbieri et al., and Georgi, Politzer and deRujula

[Ann. Phys. 103 (1977), where 2xF1 = F2 is not assumed]. The results, for
example, for F2:
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DIS CC cross sections

• Neutrino-nucleon CC cross
section for Q2 > Q2

min

normalized to the νN cross
section.

• Calculated using NLO+TMC.

• Half the cross section comes
from Q2 < 1 GeV2.
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What values of x?

• W 2 = Q2(1
x
− 1) + M2

• x > Q2/(2MEν)
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F ep
2 , Q2 = 4 GeV2

Use the Abramowicz, Levin,
Levy and Maor (ALLM)
parameterization (solid) of
F2 represent ep data. ALLM, Phys.

Lett. 1991, AL hep-ph/9712415. This
has 23 parameters.

Also shown, NLO+TMC and
NNLO+TMC and SLAC data for
Q2 = 3.7 − 4.3 GeV2. L. Whitlow

et al., Phys. Lett. B (1990).
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F ep
2 , Q2 = 0.5 GeV2

ALLM (solid), data from E665M.

Adams et al., Phys. Rev. D 54

(1996) with Q2 = 0.43, 0.59 GeV2

NLO+TMC, NNLO+TMC.

11



Hallsie Reno JLab Electrons and Neutrinos

Capella, Kaidalov, Merino and Thanh Van

CKMT, Phys. Lett. B 337, 358 (1994), Moriond 1994, 7 parameters in

F2(x, Q2) = F sea
2 (x, Q2) + F val

2 (x, Q2)

= Ax−∆(Q2)(1 − x)n(Q2)+4

(

Q2
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)1+∆(Q2)

+ Bx1−αR(1 − x)n(Q2)

(
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)αR

×
(

1 + f(1 − x)
)

12



Hallsie Reno JLab Electrons and Neutrinos

CKMT Valence in ep scattering

CKMT fit αR = 0.4250 and b = 0.6452 GeV2.

F val
2 (x, Q2) = Bx1−αR(1 − x)n(Q2)

(

Q2

Q2 + b

)αR
(

1 + f(1 − x)
)

B = Bu is calculated to be 1.2064, f = Bd/Bu = 0.15 is also calculated.
They are calculated invoking valence counting rules at Q2 = 2 GeV2. Also
fit is c = 3.5489 GeV2 in

n(Q2) =
3

2

(

1 +
Q2

Q2 + c

)
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CKMT “Sea” in ep scattering

CKMT fit A = 0.1502 and a = 0.2631 GeV2.

F sea
2 (x, Q2) = Ax−∆(Q2)(1 − x)n(Q2)+4

(

Q2

Q2 + a

)1+∆(Q2)

Also fit is ∆0 = 0.07684 and d = 1.1170 GeV2 in

∆(Q2) = ∆0

(

1 +
2Q2

Q2 + d

)

∆0 is similar to power law in generalized vector meson dominance at low
Q2, where it is pomeron dominated.
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Comparison: ALLM and CKMT in ep scattering

ALLM (solid), and CKMT
(dashed).
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CKMT in νN scattering

See CKMT Moriond Proceedings.

• F sea
2 changes only overall normalization: A → Aν = 0.60, which I

fixed at Q2 = 10 GeV2 to match reasonably well with the NLO+TMC
evaluation.

• Note: Aν/A ' 4 in sea part. For electromagnetic case

1

9
x(d + d̄ + s + s̄) +

4

9
x(u + ū) '

(3

9
+

8

9

)

xqsea =
11

9
xqsea

For CC case, with ū = d̄ ' 2s = qsea,

2x(d + s + ū) ' 5xqsea
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CKMT in νN scattering

• Expect that the underlying non-perturbative process is governed by the

same ∆(Q2) and form factor
(

Q2/(Q2 + a)
)1+∆

.

• For the valence part, recalculate B and f at Q2 = 2 GeV2. I get

Bν = 2.695 fν = 0.595

• Valence x and Q2 dependence shouldn’t change between electromagnetic
and charged current scattering.
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CKMT for F1

For F1, use

R =
F2

2xF1

(

1 +
4M2x2

Q2

)

− 1

with a parameterization of R from Whitlow et al., Phys. Lett. 1990. Below
Q2 = 0.3 GeV2, rescale the value at 0.3 GeV2 by Q2/(0.3 GeV2).
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CKMT for F3

For F3, use

F3(x, Q2) =

[

Aν

15
x−∆(Q2)(1 − x)n(Q2)+4

(

Q2

Q2 + a

)1+∆(Q2)

+ Bνx
1−αR(1 − x)n(Q2)

(

Q2
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)αR

×
(

1 + fν(1 − x)
)

]

/(1.1x) .

• The denominator of 1.1 adjusts the integral of the valence part to give
a Gross-Llewellyn-Smith sum rule result of 3 × 0.9 (QCD corrected).
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• The normalization of the sea term is a little ad-hoc. It should be the
s quark contribution. The choice above is not bad in comparison to
NLO+TMC at Q2 = 4 GeV2. (I did not try to fine tune this parameter.)
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Comparison: BYP and CKMT in νN scattering

Bodek-Yang-Park (BYP) (solid),
and CKMT (dashed).

21



Hallsie Reno JLab Electrons and Neutrinos

Strategy for cross sections

• Use NLO+TMC in for Q2 > Q2
0. Attach a parameterization for Q2 < Q2

0.
Should be insensitive to Q2

0.

• Results shown for Q2
0 = 4 GeV2.
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νN CC cross section

• Solid lines, W 2
min = 4 GeV2,

dashed lines for W 2
min = 2

GeV2.

• Upper solid and dashed
are NLO+TMC, lower
two are CKMT and BYP
extrapolations below Q2

0.

• Dotted lines show LO+TMC.
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ν̄N CC cross section

• Solid lines, W 2
min = 4 GeV2,

dashed lines for W 2
min = 2

GeV2.

• Upper solid and dashed
are NLO+TMC, lower
two are CKMT and BYP
extrapolations below Q2

0.

• Dotted lines show LO+TMC.
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Summary

• The CKMT and BYP extrapolations yield similar results on the cross
sections. CKMT is slightly larger.

• The neutrino cross section is reduced by 7-8% for W 2
min = 2 GeV2 at 10

GeV, 11-13% at 5 GeV, relative to the NLO+TMC result.

• Antineutrino scattering is impacted more, with changes of order 20% at
10 GeV.

• CKMT parameterization has a simple interpretation. One can rescale
the standard sea and valence PDFs by the same Q2 dependent factors
in the CKMT parameterization and get essentially the same results.
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– Calculate Fi(x, Q2) using NLO+TMC above Q2
0.

– For Q2 < Q2
0, rescale the separate sea and valence components of

Fi(x, Q2
0) by e.g. F sea

2 (x, Q2)/F sea
2 (x, Q2

0).

• I look forward to more measurements of neutrino structure functions and
cross sections!
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