Modeling electron and neutrino scattering:

from high to low Q^2

Sergey Alekhin

IHEP Protvino

Sergey Kulagin

INR Moscow

Roberto Petti

University of South Carolina CERN

JLab, May 4-5, 2005 Workshop on Intersections of Nuclear Physics with Neutrinos and Electrons

Roberto Petti

USC & CERN

I Introduction

- II Charged lepton scattering
- Structure functions (SF) down to $Q^2 = 0$
- Evaluation of $R = \sigma_L / \sigma_T$
- Comparison with low Q data
- Extrapolation to resonance region

III Neutrino (antineutrino) scattering

- Axial-vector current and SF limit for $Q^2 \rightarrow 0$
- Comparison with NOMAD, CHORUS and NuTeV cross-section data
- ♦ Comparison with low Q data

STRUCTURE FUNCTION PHENOMENOLOGY

NNLO pQCD approximation is used for parton distributions (PDF) and structure functions (SF) as default. Analysis in the $\overline{\text{MS}}$ scheme with number of flavours fixed at 3 (FFS). Parton distributions are evolved from $Q_0^2 = 9$ GeV².

$$F_i(x,Q^2) = F_i^{\text{LT,TMC}}(x,Q^2) + \frac{H_i^{(4)}(x)}{Q^2} + \frac{H_i^{(6)}(x)}{Q^4} \quad i = 1, 2, 3$$

- Electron and muon scattering data on p and D from BCDMS,HERA,JLab,NMC,SLAC
- Neutrino (antineutrino) scattering data on C, Fe and Pb from NOMAD, NuTeV and CHORUS
- Drell-Yan data on pCu (E605) and pD/pp (E866)
- When possible, use cross-section data rather than structure function data
- Fit all data with $Q^2 > 1.0 \ GeV^2$ and center-ofmass energy $W > 1.9 \ GeV$ (avoid resonances)
- PDF and HT $(H_i(x))$ uncertainties from fits

TARGET MASS CORRECTIONS

• Effect of finite mass of target nucleon for small values of x^2M^2/Q^2 can be calculated according to Georgi and Politzer:

$$F_2^{\text{TMC}}(x,Q^2) = \frac{x^2}{\xi^2 \gamma^3} F_2^{\text{LT}}(\xi,Q^2) + \frac{6x^3 M^2}{Q^2 \gamma^4} \int_{\xi}^{1} \frac{dz}{z^2} F_2^{\text{LT}}(z,Q^2)$$

with $\gamma = (1 + 4x^2 M^2/Q^2)^{1/2}$ and $\xi = 2x/(1+\gamma)$

♦ FOR $x \to 1$ we cure the thresold problem of previous expression by expanding it in series of Q^{-2} (not applied yet in QCD fits, only in nuclear part) \implies As a result $F_i^{\text{TMC}}(x, Q^2)$ are vanishing for

 $x \to 1$ if both LT and its derivative vanish

STRUCTURE FUNCTIONS DOWN TO $Q^2 = 0$

LOW Q SF are constructed as smooth interpolation between QCD approach (LT + HT) at high Q^2 and the limit for $Q^2 \rightarrow 0$ from current conservation arguments:

- QCD matching point $Q_{\text{match}}^2 = 1.0 \text{ GeV}^2$
- Conservation of Electromagnetic Current implies $F_2 \sim Q^2$ and $F_L \sim Q^4$ as $Q^2 \rightarrow 0$.
- A cubic spline interpolation at fixed x is applied from $Q^2 = 1.0 \text{ GeV}^2$ to the $Q^2 = 0$ limit predicted by current conservation.
- Functions and derivatives match at $Q^2_{\rm match}$
- The region $0 \le Q^2 \le 1$ GeV² is determined by the asymptotics at $Q^2 \to 0$ and by the matching conditions at $Q^2 = Q^2_{\text{match}}$.

EVALUATION OF $R = \sigma_L / \sigma_T$

• Some tension observed between SLAC and NMC data for $R = \sigma_L / \sigma_T$

Impact of N3LO corrections is negligible for relatively large x after re-fitting

• Data points with $Q^2 < 1.0 \text{ GeV}^2$ (JLab, SLAC) are not included in fits

◆ The phenomenological extrapolation of the QCD phenomenology (LT + HT) can provide a good description of charged lepton data down to $Q^2 \sim 0.5$ GeV²

IMPACT OF HIGH TWISTS

- The total High Twist contribution (Twist-4 + Twist-6) is, in general, a small correction to structure functions
- The extrapolation of phenomenological HTs provides a sizeable correction in the resonance region (W < 1.9 GeV)</p>

EXTRAPOLATION TO RESONANCE REGION

• Use data on p and D targets with W > 1.9 GeV in fits.

• Extrapolation of DIS calculations to the resonance region with W < 1.9 GeV (not used in fits) is consistent with duality.

APPLICATION TO NEUTRINO SCATTERING

Roberto Petti

USC & CERN

- Predictions for the asymptotic value $F_2(Q^2 = 0)$ in neutrino CC scattering seem in agreement with the CCFR determination on Fe target 0.210 ± 0.02 .
- The finite PCAC contribution to F_L strongly affects the asymptotic behaviour of $R = \sigma_L / \sigma_T$ for $Q^2 \to 0$:

$$F_T \sim Q^2$$

$$F_L \sim \frac{f_\pi^2 \sigma_\pi}{\pi} > 0$$

so that R is divergent for vanishing Q^2

⇒ Substantial difference with respect to charged lepton scattering.

COMPARISON WITH NOMAD νC CROSS-SECTION

Predictions of our model for differential cross sections of different neutrino energies vs. data (R.P., NuInt 2005)

Roberto Petti

USC & CERN

COMPARISON WITH CHORUS $\nu(\bar{\nu})Pb$ CROSS-SECTIONS

Predictions of our model for differential cross sections of different neutrino energies vs. data (G. Önengüt et al., Phys. Lett. B. 632 (2006) 65.)

COMPARISON WITH NuTeV $\nu(\bar{\nu})Fe$ CROSS-SECTIONS

Predictions of our model for differential cross sections of different neutrino energies vs. data (M. Tzanov, hep-ex/0507040)

COMPARISON WITH LOW Q DATA

Low x (< 0.05) CHORUS data on Pb target reach $Q^2 \sim 0.25$ GeV² and can be used for qualitative checks of PCAC contribution

<u>SUMMARY</u>

◆ A smooth interpolation between QCD phenomenology (Leading Twist + High Twists) at large Q^2 and limits for $Q^2 \rightarrow 0$ from current conservation arguments has been used to parameterize low Q^2 structure functions.

 \implies Good description of data from charged lepton DIS down to $Q^2 \sim 0.5$ GeV².

- Contributions from High Twist terms are important for $Q^2 \sim 1$ GeV², in particular for the ratio R of longitudinal to transverse cross-sections.
- Once the effect of the axial-vector current is taken into account, (anti)neutrino charged-current data are, in general, consistent with charged lepton scattering data and with universality of parton distributions:
 - Significant effect of nuclear and electroweak corrections;
 - Agreement of calculations with CHORUS, NOMAD and NuTeV data for x > 0.02;
 - Excess observed in NuTeV data at large x values (x > 0.5) with respect to calculations.