Dynamical Model of Electroweak Production of Nucleon Resonances

T.-S. H. Lee, Argonne National Laboratory

Collaborators :

T. Sato, D. Uno, K. Matsui (Osaka University)

- General Introduction
- Theoretical framework
- $\bullet\,$ Results in the Δ region
 - Photo- and Electro-production reactions
 - Neutrino-induced reactions
 - Duality and Parity-violating asymmetry
- Concluding Remarks

Objective

Develop reaction models for extracting the nucleon resonance (N^*) from data of electroweak meson production reactions at Few GeV

 \rightarrow

 \rightarrow

Test predictions from

- QCD-based hadron models (at the present time)
- Lattice QCD calculations (in the near future)

Understand hadron structure within QCD in the non-perturbative region

Electroweak reactions in the N^* region:

• dominanted by non-perturbative dynamics

• most tractable theoretical methods :

Models in terms of hadronic degrees of freedom with interactions constrainted by symmetries of Standard Model

Current Approaches

• On-shell models

(tree-diagram models, K-matrix models, dispersion-relations)

• Dynamical models

Account for off-shell effects which determine the meson-baryon scattering wavefunction in the short range region where we want to map up the structure of N^*

Why we need dynamical model

General picture : structure of N^*, Δ resonances

$$\begin{split} |N^*> &= |N_0^*> &+ |N_0^*, \pi> + |N_0^*, \pi\pi> + ... \\ \text{'quark core'} &+ \text{ meson cloud and/or scattering state} \end{split}$$

- Structure: $N_0^* \leftarrow$ hadron model or quenched Lattice QCD.
- Reaction : $N_0^*\pi$.. \leftarrow Meson-Baryon reaction theory(Dynamical model)

Dynamical Model : separate reaction dynamics, extract N^* parameters from the data

This talk:

- The SL model (Sato and Lee) in the Δ region :
 - 1995 2001 (J^{μ}_{em}): (γ,π) and $(e,e'\pi)$
 - 2002 2003 (J^{μ}_{cc}): $(
 u_{\mu}, \mu, \pi)$
 - 2004 2005 (J^{μ}_{nc}): $(\nu, \nu' \pi)$, Duality, parity violating asymmetry

Hadronic Models

Starting point : Symmetry properties of Standard Model Quark currents can be classified by 'strong' isospins:

$$J_{em}^{\mu} = V_{3}^{\mu} + V_{isoscalar}^{\mu}$$

$$J_{cc}^{\mu} = -\sqrt{2}cos\theta_{c}[(V_{1}^{\mu} + iV_{2}^{\mu}) - (A_{1}^{\mu} + iA_{2}^{\mu})]$$

$$J_{nc}^{\mu} = (1 - 2sin^{2}\theta_{W})J_{em}^{\mu} - V_{isoscalar}^{\mu} - A_{isoscalar}^{\mu}$$

with Vector (${\sf V}$) and Axial-Vector (${\sf A}$) isospin currents

$$V^{\mu}{}_{i} = \bar{q} \left[\gamma^{\mu} \frac{\tau_{i}}{2}\right] q ; \quad A^{\mu}{}_{i} = \bar{q} \left[\gamma^{\mu} \gamma_{5} \frac{\tau_{i}}{2}\right] q$$
$$V^{\mu}_{isoscalar} = \bar{q} \left[\frac{1}{6}\gamma^{\mu}I\right] q ; \quad A^{\mu}_{isoscalar} = \bar{q} \left[\frac{1}{6}\gamma^{\mu}\gamma_{5}I\right] q$$

The SL model :

 \rightarrow

write \vec{V}^{μ} and \vec{A}^{μ} isospin currents in terms of hadronic degrees of freedom : N, Δ , π , ρ , ω

Electroweak currents in SL model :

$$\begin{split} \vec{V}^{\mu} \cdot \vec{v}_{\mu} &= \bar{N} [\gamma^{\mu} \vec{v}_{\mu} - \frac{\kappa^{V}}{2m_{N}} \sigma^{\mu\nu} \partial_{\nu} \vec{v}_{\mu}] \cdot \frac{\vec{\tau}}{2} N + \frac{g_{A}}{2F} \bar{N} \gamma^{\mu} \gamma_{5} [\vec{v}_{\mu} \cdot \vec{\tau}] N \times \vec{\pi} \\ &+ [\vec{\pi} \times \partial^{\mu} \vec{\pi}] \cdot \vec{v}_{\mu} + \frac{-g_{\omega \pi V}}{m_{\pi}} \epsilon_{\alpha \mu \nu \delta} [\partial^{\alpha} \vec{v}^{\mu}] \cdot \vec{\pi} [\partial^{\nu} \omega] \\ &- i \bar{\Delta}_{\mu} \vec{T} \cdot \vec{v}_{\nu} \Gamma^{\mu\nu}_{V} N , \\ \vec{A}^{\mu} \cdot \vec{v}_{\mu} &= g_{A} \bar{N} \gamma^{\mu} \gamma_{5} \frac{\vec{\tau}}{2} \cdot \vec{v}_{\mu} N - F \partial^{\mu} \vec{\pi} \cdot \vec{v}_{\mu} - f_{\rho \pi A} (\vec{\rho}^{\mu} \times \vec{\pi}) \cdot \vec{v}_{\mu} + -i \bar{\Delta}_{\mu} \vec{T} \cdot \vec{v}_{\nu} \Gamma^{\mu\nu}_{A} \end{split}$$

 \vec{v}_{μ} : an arbitary isovector function,

Approach of SL Model :

- Start from effective Lagrangians with
 - chiral symmetry (consistent with non-perturbative QCD)
 - Electroweak currents with symmetries of Standard Model
- Apply unitary transformation to derive a Model Hamiltonian

$$H = H_0 + \Gamma_{\Delta \leftrightarrow \pi N} + \Gamma_{\Delta \leftrightarrow \gamma N} + \sum_{\alpha, \beta} V_{\alpha, \beta}$$

 $\alpha,\beta=\pi N,\gamma N$

- $\Gamma_{\Delta \leftrightarrow \pi N}$, $\Gamma_{\Delta \leftrightarrow \gamma N}$: identified with constituent quark model - $V_{\alpha,\beta}$: from effective lagrangians Excitation of quark core :

Non-resonant mechanisms :

k

• Apply Reaction Theory based on Hamiltonian

 $\gamma N \rightarrow \pi N$ amplitude

$$T_{\gamma\pi}(E) = t_{\gamma\pi}(E) + \frac{\bar{\Gamma}_{\Delta \to \pi N} \bar{\Gamma}_{\gamma N \to \Delta}}{E - m_{\Delta}^0 - \Sigma_{\Delta}(E)}.$$

- $t_{\gamma\pi}$: non-resonant amplitude (e.g. from $V_{\gamma N,\pi N}$)
- Dressed $\gamma N \to \Delta$ vertex

$$\bar{\Gamma}_{\gamma N \to \Delta} = \Gamma_{\gamma N \to \Delta} + \bar{\Gamma}_{\pi N \to \Delta} G_{\pi N}(E) v_{\gamma \pi}$$

– $\Gamma_{\gamma N \to \Delta}$: identified with constituent quark model predictions

$$\bar{\Gamma}_{\gamma N \to \Delta} = \Gamma_{\gamma N \to \Delta} + \bar{\Gamma}_{\pi N \to \Delta} G_{\pi N}(E) v_{\gamma \pi}$$

Main interests :

Vector (V) and Axial (A) form factors of $N \rightarrow \Delta$ transitions.

$$F_{em} = V_3 + V_{isoscalar}$$

$$F_{cc} = -\sqrt{2}cos\theta_c [(V_1 + iV_2) - (A_1 + iA_2)]$$

$$F_{nc} = (1 - 2sin^2\theta_W)F_{em} - V_{isoscalar} - A_{isoscalar}$$

\rightarrow

Procedures :

- $N(e, e'\pi)N \rightarrow \vec{V}, V_{isoscalar}$
- $N(e, e'\pi)N + N(\nu, \mu\pi)N \rightarrow \vec{A}$
- Parity-violating asymmetry of inclusive $N(e, e') \rightarrow A_{isoscalar}$

Results from SL model

- extensive data of (γ, π) , $(e, e'\pi)$ and $(\nu_{\mu}, \mu^{-}\pi)$ can be described
- electromanetic and axial N- Δ form factors have been determined

unpolarized $p(e, e'\pi^0)p$ data from JLAB (2001)

 $A_{LT'}$ from $p(\vec{e}, e'\pi)$ data of JLab (2004)

 σ_{LT}' from $p(\vec{e}, e'\pi)$ data of JLab (2004)

 A_{et} and A_t of from $\vec{p}(\vec{e}, e'\pi)$ data of JLab (2003)

 \mathbf{V}_{t}^{t} A_t 0.6 0.4 0.4 0.2 0.2 n 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 50 -150 -100 -50 50 -150 -100 -50 0 0 \mathbf{A}_{et} $\mathbf{\bar{A}}_{et}$ 0.4 0.4

 A_{et} and A_t from $\vec{p}(\vec{e}, e'\pi)$ data of JLab (2003)

Findings of SL model :

The determined bare N- Δ form factors are:

$$G_{\alpha}(Q^2) = G_{\alpha}(0)(1 + \boldsymbol{a}Q^2)exp(\boldsymbol{b}Q^2)G_D(Q^2)$$

with

a = 0.154 (GeV/c)⁻², b = 0.166 (GeV/c)⁻²

$$G_D(Q^2) = 1./(1 + Q^2/0.71)^2$$

 $G_M(0) = 2.42$
 $G_E(0) = 0.0315$
 $G_C(0) = -0.30$

Note:

strengths at $Q^2 = 0$ are consistent with constituent quark model

- Pion cloud has 40% effect at low Q^2 and becomes weaker at high Q^2
- $G_M^*(Q^2)$ drops faster than proton form factor $G_D(Q^2)$

E2/M1 and C2/M1 Ratios

Note: CLAS data at low Q^2 are preliminary (from C. Smith, May 2005)

SL-Model(2001) : Dressed, bare

Red data : Lattice QCD (C. Alexandrou et al. hep-lat/0409122)

Extension of the SL model for Weak Charged and Neutral Currents

- Extract $N \Delta$ axial form factors from :
 - $N(\nu, \mu\pi)$ reactions

 \rightarrow

– Parity-violating asymmetry of inclusive N(e, e')

• Explore quark-hadron duality in inclusive $N(\nu,\mu)$ and $N(\nu,\nu')$

Procedures :

 \rightarrow

$$j_{\mu}^{em} = V_{\mu}^{3} + V_{\mu}^{IS}$$

• Vctor currents V_{μ} : determined in $(e, e'\pi)$ studies

• Non-resonant axial current A_{μ} : derived from effective Lagrangians

ightarrowExtract $G^A_{N,\Delta}(Q^2)$ from $N(\nu,\mu\pi)$ data at few GeV Total cross sections of $p(\nu_{\mu}, \mu^{-}\pi)$ results from SL model

 $d\sigma/dQ^2$ of $p(
u_{\mu},\mu^-\pi^+)$

 $d\sigma/dQ^2$ of $p(
u_{\mu},\mu^-\pi^+)$

Determined axial N- Δ form factor G_A^*

Dotted curves : no pion cloud effect

Role of neutral currents

• Consider Parity-violating asymmetry (A) of $e + p \rightarrow e' + X$

$$A = \frac{d\sigma(h_e = +1) - d\sigma(h_e = -1)}{d\sigma(h_e = +1) + d\sigma(h_e = -1)}$$
$$= -\frac{Q^2 G_F}{\sqrt{2}(4\pi\alpha)} [2 - 4\sin^2\theta_W + \Delta_V + \Delta_A]$$

$$\Delta_V : \frac{determined}{SL - model}$$
$$\Delta_A \propto \sin^2 \frac{\theta}{2} (1 - 4\sin^2 \theta_W) W_3(em - nc)$$

 $W_3(em - nc) \leftarrow isoscalar axial form factor A_{isoscalar}$

 $E_e = 1 \text{ GeV}, \ \theta = 110^o, \ W = 1.232 \text{ GeV}$

Experimental tests by the data from G_0 experiment ??

• Invistigate quark-hadron duality in neutrino-induced reactions

What is Duality ?

An average of the inclusive electron scattering observables in the resonance region should be close to the predictions from using the parton distribution functions determined in Deeply Inelastic Scattering (DIS).

Inclusive
$$(e, e')$$
Cross Sections ($x = Q^2/(2\omega M_N)$)

$$\frac{d\sigma^{(e,e')}}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\omega}F_2(x,Q^2) + 2\frac{1}{M_N}F_1(x,Q^2)tan^2\frac{\theta}{2}\right]$$

Duality in p(e, e')

Data : Y. Liang et al, JLab, 2004

\rightarrow

How about Duality for the neutron target and (ν, e) and (ν, ν') ?

 \rightarrow

Apply the SL Model to explore local duality in Δ region

N(e, e')

Upper : proton taget

Lower : neutron target

Predictions for $N(\nu, \mu)$

Upper : proton taget

Lower : neutron target

Predictions for $N(\nu, \nu')$

Upper : proton taget

Lower : neutron target

• Duality is confirmed for the unpolarized structure functions of all electroweak processes

 \rightarrow

• De Rujula, Georgi, and Politzer : Parton model prediction is the twist-2 (handbag) mechanism of the Operator Product Expansion of QCD

(W < 2 GeV)

($2 \; GeV < W$)

How to relate them within a unified model ??

Concluding Remarks

 Very extensive data of electroweak reactions in the ∆ region can be described by hadronic model

• The electroweak N- Δ form factors up to $Q^2 \sim 4~({\rm GeV/c})^2$ have been determined

Theoretical challenges :

 \rightarrow

- Which QCD-based model can explain these form factors ?
- Can they be explained by Lattice QCD ?

 We have predicted that the Quark-Hadron Duality also exists in the neutrino-induced weak processes

Future experimental confirmations will be interesting !!

 Duality suggests the possibility of constructing a unified model which can account for the transition from hadronic picture to quark-gluon picture

A challenge in the future !

 \rightarrow

- Current efforts
 - Extend the model to describe production of higher mass N* in a dynamical coupled-channel approach
 Main focus of Excited Baryon Analysis Center (EBAC)
 (With A. Matsuyama, T. Sato, M. Paris, B. Julia-Diaz)
 - Apply the model to predict neutrino-nucleus reaction
 (with B. Szczerbinska, K. Kubodera, and T. Sato)

