Electro- and neutrinoproduction

 of resonances
(including the second resonance region)

O.Lalakulich, E.A. Paschos

Dortmund University, Germany

Outline

- Why do we need to study weak resonance production and go beyond the Delta-peak
- Electromagnetic and weak vertecies of resonance production: how they are related.
- General way to determine the electromagnetic form factors from JLab and Mainz accelerator electroproduction data: $P_{33}(1232), P_{11}(1440), D_{13}(1520)$ and $S_{11}(1535)$ resonaces
- Results for the cross section
- Checking quark-hadron duality and Adler sum rules
- Conclusions

Neutrino oscillations in LBL experiments

- T2K (Tokai to Kamioka) $\left\langle E_{\nu}\right\rangle \sim 0.7 \mathrm{GeV}$ (planned)
- K2K (KEK to Kamioka) $\left\langle E_{\nu}\right\rangle \sim 1 \mathrm{GeV}$ (operating)
- MINOS (Fermilab to Soudan) $\left\langle E_{\nu}\right\rangle \sim 3 \mathrm{GeV}$ (operating)
- CNGS (CERN to GranSasso) $\left\langle E_{\nu}\right\rangle \sim 17 \mathrm{GeV}$ (under construction)

http://proj-cngs.web.cern.ch/ proj-cngs/Download/

Download.htm

The total cross section

$\sigma_{t o t}=\sigma_{\mathrm{QE}}+\sigma_{\mathrm{RES}}+\sigma_{\mathrm{DIS}}$

1) quasi-elastic (QE)
$\nu_{\mu} n \rightarrow \mu^{-} p$
2) one-pion-production \equiv resonance production (RES)
$\nu_{\mu} N \rightarrow \mu^{-} R \rightarrow \mu^{-} N^{\prime} \pi$
3) deep inelastic (DIS)
$\nu_{\mu} N \rightarrow \mu^{-} X$

Resonance production

$R_{2 I 2 J}$	M_{R}, GeV	$\Gamma_{R(t o t)}, \mathrm{GeV}$	$\Gamma_{R}(R \rightarrow \pi N) / \Gamma_{R(t o t)}$
$P_{33}(1232)\left(\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}\right)$	1.232	0.120	0.995
$P_{11}(1440)\left(P_{11}^{+}, P_{11}^{0}\right)$	1.440	0.350	0.65
$D_{13}(1520)\left(D_{13}^{+}, D_{13}^{0}\right)$	1.520	0.125	0.56
$S_{11}(1535)\left(S_{11}^{+}, S_{11}^{0}\right)$	1.535	0.150	0.45

Accurate measurements and several theoretical approaches are available for the leading $P_{33}(1232)$ resonance for both electro- and neutrinoproduction

What about resonances with higher masses?

Accurate measurements and several theoretical approaches for electroproduction

Higher mass resonances in neutrinoproduction

1) Old experiments have large errorbars

อ $\operatorname{ANL}\left(E_{\nu} \sim 0.5-1.5 \mathrm{GeV}\right)$

- $\mathrm{BNL}\left(E_{\nu} \sim 1-3 \mathrm{GeV}\right)$
- $\operatorname{SKAT}\left(E_{\nu} \sim 4-12 \mathrm{GeV}\right)$
- $\operatorname{BEBC}\left(E_{\nu} \sim 50 \mathrm{GeV}\right)$

2) Modern experiments intended to study exclusive one-pion production

- $\operatorname{K2K}\left(E_{\nu} \sim 0.2-4 \mathrm{GeV}\right)$
- MiniBOONe

$$
\left(E_{\nu} \sim 0.3-2.5 \mathrm{GeV}\right)
$$

- Minerva
($E_{\nu} \sim 0.3-2.5 \mathrm{GeV}$;
$\mathrm{C}, \mathrm{Fe}, \mathrm{Pb}$ nuclear targets)

3) Theory:

- Rein-Sehgal model (1980), based on the relativistic quark model; update by K.Kuzmin et al (Dubna), K. Hagiwara et al (KEK)
- phenomenological model of Dortmund group (hep-ph/0604132)

Higher mass resonances in neutrinoproduction

4) Fitting the total neutrino cross section $\sigma_{t o t}=\sigma_{\mathrm{QE}}+\sigma_{\mathrm{RES}}+\sigma_{\mathrm{DIS}}:$ to avoid double counting one should separate RES and DIS invariant-mass regions

- V. Naumov, (Dubna) Max Born Symp, Wroclaw, Dec 2005

RES $W<1.5 \mathrm{GeV} \quad$ DIS $W>1.5 \mathrm{GeV}$

- Y. Nowak, (Wroclaw) Max Born Symp, Wroclaw, Dec 2005
Δ resonance and smooth transition to DIS single pion channel

The opportunity to make such separation relies on the phenomenon of quark-hadron duality. It would be nice to study duality in a direct way

Phenomenological description

The electromagnetic hadronic vertex is parametrized in terms of the electromagnetic nucleon-resonance form factors $C_{i}^{(p)}$ and $C_{i}^{(n)}$, which depend on the momentum transfered squared $q^{2}=-Q^{2}$ and in general case do not coincide for proton and neutron

The weak hadronic vertex is parametrized in terms of the weak nucleon-resonance vector $\left(C_{i}^{V}\right)$ and axial $\left(C_{i}^{A}\right)$ form factors

The form factors characterize the hadronic vertex and are independent of the leptonic one.
elasticity

R	M_{R}, GeV	$\Gamma_{R(t o t)}, \mathrm{GeV}$	$\Gamma_{R}(R \rightarrow \pi N) / \Gamma_{R(t o t)}$
$P_{33}(1232)\left(\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}\right)$	1.232	0.114	0.995
$P_{11}(1440)\left(P_{11}^{+}, P_{11}^{0}\right)$	1.440	$0.350(250-450)$	$0.6(0.6-0.7)$
$D_{13}(1520)\left(D_{13}^{+}, D_{13}^{0}\right)$	1.520	$0.125(110-135)$	$0.5(0.5-0.6)$
$S_{11}(1535)\left(S_{11}^{+}, S_{11}^{0}\right)$	1.535	$0.150(100-250)$	$0.4(0.35-0.55)$

Isospin relations for isospin-3/2 states

1) electromagnetic amplitudes (and as a consequence form factors) are the same for p and n

$$
\begin{aligned}
A\left(\gamma p \rightarrow R^{+}\right) & =A\left(\gamma n \rightarrow R^{0}\right) \\
C^{(p)} & =C^{(n)}
\end{aligned}
$$

2) Isospin triplet $V_{a}=\left(V_{1}, V_{2}, V_{3}\right)$

Weak and el-m amplitudes

$$
\begin{gathered}
A\left(W^{+} n \rightarrow R^{+}\right)^{V}= \\
=\sqrt{\frac{1}{3}} \sqrt{2} \frac{V_{1}-i V_{2}}{\sqrt{2}}=A\left(\gamma p \rightarrow R^{+}\right)
\end{gathered}
$$

Form factors
$C^{(p)}=C^{V}$

Form factors for $P_{33}(1232)\left(J^{P}=\frac{3}{2}^{+}\right)$

Earlier articles in this notation: Dufner, Tsai, PR 168, 1801; Lewellyn Smith, PR 3 (1972) 261;
Schreiner, von Hippel, NPB58 (1983) 333; Paschos, Sakuda, Yu, PRD 69 (2004) 014013; Singh, Athar,
Ahmad, hep-ph/0507016;
The resonance field is described by a Rarita-Schwinger spinor $\psi_{\lambda}^{(R)}$. Quite generally the weak vertex for the resonance production may be written as

$$
\begin{aligned}
&\langle\Delta| V^{\nu}|N\rangle=\bar{\psi}_{\lambda}^{(R)}\left[\frac{C_{3}^{V}}{m_{N}}\left(d q g^{\lambda \nu}-q^{\lambda} \gamma^{\nu}\right)\right.+\frac{C_{4}^{V}}{m_{N}^{2}}\left(q \cdot p g^{\lambda \nu}-q^{\lambda} p^{\nu}\right) \\
&\left.+\frac{C_{5}^{V}}{m_{N}^{2}}\left(q \cdot p^{\prime} g^{\lambda \nu}-q^{\lambda} p^{\prime \nu}\right)+C_{6}^{V} g^{\lambda \nu}\right] \gamma_{5} u_{(N)} \\
&\langle\Delta| A^{\nu}|N\rangle=\bar{\psi}_{\lambda}\left[\frac{C_{3}^{A}}{m_{N}}\left(q q g^{\lambda \nu}-q^{\lambda} \gamma^{\nu}\right)+\frac{C_{4}^{A}}{m_{N}^{2}}\left(q \cdot p g^{\lambda \nu}-q^{\lambda} p^{\nu}\right)+C_{5}^{A} g^{\lambda \nu}+\frac{C_{6}^{A}}{m_{N}^{2}} q^{\lambda} q^{\nu}\right] u_{(N)}
\end{aligned}
$$

dictated by gauge invariance

How the form factors can be determined

Axial FF: PCAC $\quad \overline{\Delta_{\mu}^{+}} q^{\mu}\left[C_{5}^{A}+\frac{C_{6}^{A}}{m_{N}^{2}} q^{2}\right] u_{N},=-i \sqrt{\frac{1}{3}} \frac{m_{\pi}^{2} f_{\pi}}{q^{2}-m_{\pi}^{2}} \overline{\Delta_{\mu}^{+}} g_{\Delta} q^{\mu} u_{N}$.

$$
\Longrightarrow C_{5}^{A}\left(Q^{2}=0\right)=\frac{g_{\Delta} f_{\pi}}{\sqrt{3}}=1.2 \quad C_{6}^{A}=m_{N}^{2} \frac{C_{5}^{A}}{m_{\pi}^{2}+Q^{2}}
$$

$$
\text { Vector FF: CVC } \quad q^{\mu} J_{\mu}=0 \quad \Longrightarrow \quad C_{6}^{V}=0
$$

comparison with electroproduction cross section (1968-1971) and magnetic multipole dominance leads to $C_{3}^{V}(0)=2.05 \pm 0.04, \quad C_{4}^{V}(0)=-\frac{m_{N}}{W} C_{3}^{V}, \quad C_{5}^{V}=0$
FF fall down with Q^{2} faster than dipole $\frac{C_{3}^{V}(0)}{D} \frac{1}{1+\frac{Q^{2}}{4 M_{V}^{2}}}$
with $\left(1+\frac{Q^{2}}{M_{V}^{2}}\right)^{2} \equiv D_{V} \quad$ with $\quad M_{V}=0.84 \mathrm{GeV}$
2001: unambigious evidences from the JLab for the contribution of the electric $E 2 \sim-2.5 \%$, of scalar multipoles $S 2 \sim-5 \%$. They are taken into account by extracting the form factors from the helicity amplitudes O.L., Paschos, Piranishvili, 2006

Helicity amplitudes for $P_{33}(1232)$

Helicity amplitudes evaluated from the electroproduction data on proton at $W=M_{R}$ Tiator et al. (Mainz),
EPJA 19 (2004); Burkert, Li (JLab), IJMP 13 (2004); Aznauryan (JLab) (private comm, 2005) The relations to C_{i}^{V} are calculated by our group at arbitrary Q^{2} and W

$$
\begin{aligned}
A_{3 / 2} & =\sqrt{\frac{\pi \alpha_{e m}}{m_{N}\left(W^{2}-m_{N}^{2}\right)}}\left\langle R,+\frac{3}{2}\right| J_{e m} \cdot \varepsilon(R)\left|N,+\frac{1}{2}\right\rangle= \\
& =-\sqrt{N} \frac{|\vec{q}|}{p^{\prime 0}+M_{R}}\left[\frac{C_{3}^{(p)}}{m_{N}}\left(m_{N}+M_{R}\right)+\frac{C_{4}^{(p)}}{m_{N}^{2}}\left(m_{N} \nu-Q^{2}\right)+\frac{C_{5}^{(p)}}{m_{N}^{2}} m_{N} \nu\right] \\
A_{1 / 2} & =\sqrt{\frac{\pi \alpha_{e m}}{m_{N}\left(W^{2}-m_{N}^{2}\right)}}\left\langle R,+\frac{1}{2}\right| J_{e m} \cdot \varepsilon(R)\left|N,-\frac{1}{2}\right\rangle \\
& =\sqrt{\frac{N}{3} \frac{|\vec{q}|}{p^{\prime 0}+M_{R}}\left[\frac{C_{3}^{(p)}}{m_{N}}\right.}\left(m_{N}+M_{R}-2 \frac{m_{N}}{M_{R}}\left(p^{\prime 0}+M_{R}\right)\right)+\frac{C_{4}^{(p)}}{m_{N}^{2}}\left(m_{N} \nu-Q^{2}\right)+\frac{C_{5}^{(p)}}{m_{N}^{2}} m_{N} \\
S_{1 / 2} & =\sqrt{\frac{\pi \alpha_{e m}}{m_{N}\left(W^{2}-m_{N}^{2}\right)}} \frac{q_{z}}{\sqrt{Q^{2}}}\left\langle R,+\frac{1}{2}\right| J_{e m} \cdot \varepsilon^{(S)}\left|N,+\frac{1}{2}\right\rangle= \\
& =\sqrt{\frac{2 N}{3}} \frac{|\vec{q}|^{2}}{M_{R}\left(p^{\prime 0}+M_{R}\right)}\left[\frac{C_{3}^{(p)}}{m_{N}} M_{R}+\frac{C_{4}^{(p)}}{m_{N}^{2}} W^{2}+\frac{C_{5}^{(p)}}{m_{N}^{2}} m_{N}\left(m_{N}+\nu\right)\right]
\end{aligned}
$$

$$
N=\frac{\pi \alpha_{e m}}{m_{N}\left(W^{2}-m_{N}^{2}\right)} 2 m_{N}\left(p^{\prime 0}+M_{R}\right)
$$

Beyond the magnetic dominance

Helicity amplitudes for P_{33} (1232) excitation
on proton target at $W=M_{P 1232}$

$$
\begin{aligned}
C_{3}^{V} & =\frac{2.13}{D_{V}} \cdot \frac{1}{1+Q^{2} / 4 M_{V}^{2}} \\
C_{4}^{V} & =\frac{-1.5}{D_{V}} \cdot \frac{1}{1+Q^{2} / 4 M_{V}^{2}} \\
C_{5}^{V} & =\frac{-0.58}{D_{V}} \cdot \frac{1}{1+Q^{2} / 0.76 M_{V}^{2}}
\end{aligned}
$$

where
$D_{V}=\left(1+Q^{2} / 0.71 \mathrm{GeV}^{2}\right)^{2}$
Coincide with the "magnetic dominance" values with 4% accuracy

$D_{13}(1520): J^{P}=3 / 2^{-}, I=1 / 2$

The formulas for this resonance are similar to that for P_{33} with the γ_{5} changing the place: the are 3 independent vector form factors and 3 independent axial form factors

$$
\left.\begin{array}{rl}
\left\langle D_{13}\right| V^{\nu}|N\rangle= & \bar{\psi}_{\lambda}^{(R)}\left[\frac{C_{3}^{V}}{m_{N}}\left(h q g^{\lambda \nu}-q^{\lambda} \gamma^{\nu}\right)\right. \\
+\frac{C_{4}^{V}}{m_{N}^{2}}\left(q \cdot p g^{\lambda \nu}-q^{\lambda} p^{\nu}\right) \\
& \left.+\frac{C_{5}^{V}}{m_{N}^{2}}\left(q \cdot p^{\prime} g^{\lambda \nu}-q^{\lambda} p^{\prime \nu}\right)\right] u_{(N)}
\end{array}\right\} \begin{aligned}
& \left\langle D_{13}\right| A^{\nu}|N\rangle=\bar{\psi}_{\lambda}\left[\frac{C_{3}^{A}}{m_{N}}\left(k q g^{\lambda \nu}-q^{\lambda} \gamma^{\nu}\right)+\frac{C_{4}^{A}}{m_{N}^{2}}\left(q \cdot p g^{\lambda \nu}-q^{\lambda} p^{\nu}\right)+C_{5}^{A} g^{\lambda \nu}+\frac{C_{6}^{A}}{m_{N}^{2}} q^{\lambda} q^{\nu}\right] \gamma_{5} u(.)
\end{aligned}
$$

Isospin relations for isospin-1/2 states

1) electromagnetic amplitudes (and as a consequence form factors) are different for p and n
2) Isospin triplet $V_{a}=\left(V_{1}, V_{2}, V_{3}\right)$

Weak and el-m amplitudes

$$
\begin{gathered}
A\left(W^{+} n \rightarrow R^{+}\right)^{V}= \\
=\sqrt{\frac{2}{3}} \sqrt{2} \frac{V_{1}-i V_{2}}{\sqrt{2}}=2 \sqrt{\frac{1}{3}} V_{3}= \\
=A\left(\gamma n \rightarrow R^{0}\right)-A\left(\gamma p \rightarrow R^{+}\right)
\end{gathered}
$$

Form factors

$$
C^{V}=C^{(n)}-C^{(p)}
$$

$D_{13}(1520)$: Vector form factors

Helicity amplitudes (and as a consequence form factors) for electroproducton are different for the proton and neutron.

Helicity amplitudes for $D_{13}(1520)$ excitation
on proton target at $W=M_{D 1520}$,

$$
\begin{aligned}
C_{3}^{(p)} & =\frac{2.95}{D_{V}} \cdot \frac{1}{1+Q^{2} / 8.9 M_{V}^{2}} \\
C_{4}^{(p)} & =\frac{-1.05}{D_{V}} \cdot \frac{1}{1+Q^{2} / 8.9 M_{V}^{2}} \\
C_{5}^{(p)} & =\frac{-0.48}{D_{V}} \\
C_{3}^{(n)} & =\frac{-1.14}{D_{V}} \cdot \frac{1}{1+Q^{2} / 8.9 M_{V}^{2}} \\
C_{4}^{(n)} & =\frac{0.46}{D_{V}} \cdot \frac{1}{1+Q^{2} / 8.9 M_{V}^{2}} \\
C_{5}^{(n)} & =\frac{-0.17}{D_{V}}
\end{aligned}
$$

where latest data from Aznauryan (JLab), 2005, private communi- $D_{V}=\left(1+Q^{2} / 0.71 \mathrm{GeV}^{2}\right)^{2}$ cation are shown

Axial form factors for $D_{13}(1520)$

From PCAC $C_{6}^{A}\left(Q^{2}\right)=m_{N}^{2} \frac{C_{5}^{A}\left(Q^{2}\right)}{m_{\pi}^{2}+Q^{2}}, \quad C_{5}^{A}\left(D_{13}\right)=-\sqrt{\frac{2}{3}} g_{\pi N R} f_{D 13}=-2.1$
The Q^{2} dependence for axial form factors cannot be determined from experiment because of the lack of the data.
Instead, we consider two cases: (i) "fast fall-off", in which the Q^{2} dependence is choosen the same as for the P_{33} resonance, and (ii) "slow fall-off", in which the Q^{2} dependence is flatter and is taken to be the same as for the vector form factors for each resonace.

$$
\begin{aligned}
D_{13}(1520): \quad C_{5}^{A} & =\frac{-2.1 / D_{A}}{1+Q^{2} / 3 M_{A}^{2}}(\text { "fast fall-off") } \\
C_{5}^{A} & =\frac{-2.1 / D_{A}}{1+Q^{2} / 8.9 M_{A}^{2}} \text { ("slow fall-off") . }
\end{aligned}
$$

with the axial mass common for all the resonances $M_{A}=1.05 \mathrm{GeV}$
We also do not know C_{3}^{A}, C_{4}^{A} and take $C_{3}^{A}\left(Q^{2}\right)=0, C_{4}^{A}\left(Q^{2}\right)=0$.
For more details see O.L., E. Paschos, G. Piranishvili, hep-ph/0602210

$P_{11}(1440), J^{P}=\frac{1}{2}^{+}$and $S_{11}(1535), J^{P}=\frac{1}{2}$

For the spin-1/2 resonances all formulas are simpler

$$
\begin{aligned}
\left\langle P_{11}\right| J^{\nu}|N\rangle=\bar{u}\left(p^{\prime}\right) & {\left[\frac{g_{1}^{V}}{\left(m_{N}+M_{R}\right)^{2}}\left(Q^{2} \gamma^{\nu}+\not q q^{\nu}\right)+\frac{g_{2}^{V}}{m_{N}+M_{R}} i \sigma^{\nu \rho} q_{\rho}\right.} \\
& \left.-g_{1}^{A} \gamma^{\nu} \gamma_{5}-\frac{g_{3}^{A}}{m_{N}} q^{\nu} \gamma_{5}\right] u(p)
\end{aligned}
$$

where $\sigma^{\nu \rho}=\frac{i}{2}\left[\gamma^{\nu}, \gamma^{\rho}\right]$.

$$
\begin{aligned}
\left\langle S_{11}\right| J^{\nu}|N\rangle=\bar{u}\left(p^{\prime}\right) & {\left[\frac{g_{1}^{V}}{\left(m_{N}+M_{R}\right)^{2}}\left(Q^{2} \gamma^{\nu}+\not q q^{\nu}\right) \gamma_{5}+\frac{g_{2}^{V}}{m_{N}+M_{R}} i \sigma^{\nu \rho} q_{\rho} \gamma_{5}\right.} \\
& \left.-g_{1}^{A} \gamma^{\nu}-\frac{g_{3}^{A}}{m_{N}} q^{\nu}\right] u(p),
\end{aligned}
$$

Vector form factors for $P_{11}(1440)$

Helicity amplitudes (and as a consequence form factors) for electroproducton are different for the proton and neutron, because they include now not only isovector, but also isoscalar part.

Helicity amplitudes for $P_{11}(1440)$ excitation on proton target at $W=M_{P 1440}$
[1] Tiator et al. (Mainz), EPJA 19 (2004);
[2] Burkert, Li (JLab), IJMP 13 (2004);

$$
\begin{aligned}
& g_{1}^{(p)}=\frac{2.3 / D_{V}}{1+Q^{2} / 4.3 M_{V}^{2}}, \\
& g_{2}^{(p)}=\frac{-0.76}{D_{V}}\left[1-2.8 \ln \left(1+\frac{Q^{2}}{1 \mathrm{GeV}^{2}}\right)\right] \\
& g_{i}^{V}=g_{i}^{(n)}-g_{i}^{(p)}
\end{aligned}
$$

neutron: neglecting isoscalar contribution (which makes sense within the accuracy of the data available)
$g_{i}^{(n)}=-g_{i}^{(p)}$

Vector form factors for $S_{11}(1535)$

Helicity amplitudes (and as a consequence form factors) for electroproducton are different for the proton and neutron.

$$
\begin{aligned}
& g_{1}^{(p)}=\frac{2.0 / D_{V}}{1+\frac{Q^{2}}{1.2 M_{V}^{2}}\left[1+7.2 \ln \left(1+\frac{Q^{2}}{1 \mathrm{GeV}^{2}}\right)\right.} \\
& g_{2}^{(p)}=\frac{0.84}{D_{V}}\left[1+0.11 \ln \left(1+\frac{Q^{2}}{1 \mathrm{GeV}^{2}}\right)\right] \\
& g_{i}^{V}=g_{i}^{(n)}-g_{i}^{(p)}
\end{aligned}
$$

Helicity amplitudes for $S_{11}(1535)$ excitation on proton target at $W=M_{S 1535}$
[1] Tiator et al. (Mainz), EPJA 19 (2004);
[2] Burkert, Li (JLab), IJMP 13 (2004);
[3] Aznauryan (JLab)(private comm, 2005)
neutron: neglecting isoscalar contribution (which makes sense within the accuracy of
the data available)
$g_{i}^{(n)}=-g_{i}^{(p)}$
[4] Armstrong et al. (JLab), PRD 60 (2000)

Axial form factors

Axial form factors are related by PCAC to the strong $\pi N R$ couplings $g_{P 11}$ and $g_{S 11}$, which in turn are determined from the elastic resonance width

$$
\begin{array}{ll}
P_{11}(1440): & g_{3}^{A}\left(Q^{2}\right)=\frac{m_{N}\left(M_{R}+m_{N}\right)}{Q^{2}+m_{\pi}^{2}} g_{1}^{A}\left(Q^{2}\right),
\end{array} g_{1}^{A}(0)=-\sqrt{\frac{2}{3}} \frac{g_{P 11} f_{\pi}}{M_{R}+m_{N}}=-0.51 .
$$

The Q^{2} dependence for g_{1}^{A} is not known, so we again consider "fast fall-off" and "slow fall-off" cases:

$$
\begin{aligned}
& P_{11}(1440): \quad g_{1}^{A}\left(Q^{2}\right)=\frac{-0.51 / D_{A}}{1+Q^{2} / 3 M_{A}^{2}} \text { ("fast fall-off") } \\
& g_{1}^{A}\left(Q^{2}\right)=\frac{-0.51 / D_{A}}{1+Q^{2} / 4.3 M_{V}^{2}} \text { ("slow fall-off"), } \\
& S_{11}(1535): \quad g_{1}^{A}\left(Q^{2}\right)=\frac{-0.21 / D_{A}}{1+Q^{2} / 3 M_{A}^{2}} \text { ("fast fall-off") } \\
& g_{1}^{A}\left(Q^{2}\right)=\frac{-0.21 / D_{A}}{1+Q^{2} / 1.2 M_{A}^{2}}\left[1+7.2 \ln \left(1+\frac{Q^{2}}{1 \mathrm{GeV}^{2}}\right)\right] \text { ("slow fall- }
\end{aligned}
$$

How to calculate the cross section

The calculations have been done Schreiner, von Hippel, NPB 58 (1973) 333, neglecting lepton, that is a valid approximation at $Q^{2} \gg m_{\mu}^{2}$. Recent formulas including muon mass Paschos, O.L., PRD 71 (2005) 074003 we present it in a form close to DIS. The cross section in this form is the same for all the resonances

$$
\begin{aligned}
& \frac{d \sigma}{d Q^{2} d W}=\frac{G^{2}}{4 \pi} \cos ^{2} \theta_{C} \frac{W}{m_{N} E^{2}}\left\{\mathcal{W}_{1}\left(Q^{2}+m_{\mu}^{2}\right)+\frac{\mathcal{W}_{2}}{m_{N}^{2}}\left[2(p k)\left(p k^{\prime}\right)-\frac{1}{2} m_{N}^{2}\left(Q^{2}+m_{\mu}^{2}\right)\right]-\right. \\
& \left.\frac{\mathcal{W}_{3}}{m_{N}^{2}}\left[Q^{2}(p k)-\frac{1}{2}(p q)\left(Q^{2}+m_{\mu}^{2}\right)\right]+\frac{\mathcal{W}_{4}}{m_{N}^{2}} m_{\mu}^{2} \frac{\left(Q^{2}+m_{\mu}^{2}\right)}{2}-2 \frac{\mathcal{W}_{5}}{m_{N}^{2}} m_{\mu}^{2}(p k)\right\}
\end{aligned}
$$

and the hadronic structure functions are defined as usual

$$
\mathcal{W}^{\mu \nu}=-g^{\mu \nu} \mathcal{W}_{1}+p^{\mu} p^{\nu} \frac{\mathcal{W}_{2}}{m_{N}^{2}}-i \varepsilon^{\mu \nu \sigma \lambda} p_{\sigma} q_{\lambda} \frac{\mathcal{W}_{3}}{2 m_{N}^{2}}+\frac{\mathcal{W}_{4}}{m_{N}^{2}} q^{\mu} q^{\nu}+\frac{\mathcal{W}_{5}}{m_{N}^{2}}\left(p^{\mu} q^{\nu}+p^{\nu} q^{\mu}\right)
$$

The functional dependence of the structure functions on the form factors vary with resonance.

- $\mathcal{W}_{1}, \mathcal{W}_{2}, \mathcal{W}_{3}$ give main contribution; \mathcal{W}_{i} in terms of C_{i} are given in our paper
- \mathcal{W}_{3} describe the vector-axial interference
- $\mathcal{W}_{4}, \mathcal{W}_{5}$ contribute to the Xsec proportional to the lepton mass

Neutrinoproduction at different E_{ν}

- At $E_{\nu}<1 \mathrm{GeV}$ the second resonance region is negligible in neutrino scattering. It will not be seen in K2K and MiniBOONE.
- At $E_{\nu} \sim 50 \mathrm{GeV}$ the two peaks are clearly seen. However, BEBC experiment Allasia et al, NPB 343 (1990) 285 didn’t resolve them.
$\nu n \rightarrow R^{+} \rightarrow p \pi^{0}, \quad \nu n \rightarrow R^{+} \rightarrow n \pi^{+}$

BNL data points are consistently higher than those of ANL and SKAT, errorbars are large

For $\pi^{+} n$ channel our curve is a little lower than experimental points: either contributions from higher resonances or a smooth isospin1/2 incoherent background, for example

$$
\begin{aligned}
& \sigma_{b g r}^{\pi^{+}{ }_{n}}=5 \cdot 10^{-40}\left(\frac{E_{\nu}}{1 \mathrm{GeV}}-0.28\right)^{1 / 4} \mathrm{~cm}^{2} \\
& \sigma_{b g r}^{\pi^{0} p}=\frac{1}{2} \sigma_{b g r}^{\pi^{+}{ }_{n}}
\end{aligned}
$$

Duality for electron scattering: $F_{2}^{e N}$

 The use of the Nachtman scaling variable
$\xi=\frac{2 x}{1+\left(1+4 x^{2} m_{N}^{2} / Q^{2}\right)^{1 / 2}}$ includes some of $I_{2}^{e N}\left(Q^{2}\right)=\frac{\int_{\xi_{i}}^{\xi_{f}} d \xi F_{2}^{e N(\mathrm{res})}\left(\xi, Q^{2}\right)}{\int_{\xi_{i}}^{\xi_{f}} d \xi F_{2}^{e N(\mathrm{LT})}\left(\xi, Q^{2}\right)}$, the target mass corrections

$$
\xi_{i}=\xi\left(W=1.6 \mathrm{GeV}, Q^{2}\right)
$$

As Q^{2} increases, the resonance curves should slide along the DIS curve

$$
\xi_{f}=\xi\left(W=1.1 \mathrm{GeV}, Q^{2}\right)
$$

Duality for CC neutrino scattering: $F_{2}^{\nu N}$

Similar results for $P_{33}(1232)$ are in Matsui,
Sato, Lee, PRC 72
and for Rein-Sehgal model in Graczyk,
Juszczak, Sobczyk, hep-ph/0601077

$I_{2}(\mathrm{res} / \mathrm{DIS})=\frac{\int_{\xi_{i}}^{\xi_{f}} F_{2}^{\mathrm{res}}\left(\xi, Q^{2}\right) d \xi}{\int_{\xi_{i}}^{\xi_{f}} F_{2}^{\mathrm{DIS}}\left(\xi, Q^{2}\right) d \xi}$,
$\xi_{i}=\xi_{i}\left(W=1.6 \mathrm{GeV}, Q^{2}\right)$,
$\xi_{f}=\xi_{f}\left(W=1.1 \mathrm{GeV}, Q^{2}\right)$.
The discrepancy will be eleminated by including other resonances, or background, or modifying the FF at large Q^{2}.

Resonance contribution to the Adler sum rule

$$
\left[g_{1 V}^{(Q E)}\right]^{2}+\left[g_{1 A}^{(Q E)}\right]^{2}+\left[g_{2 V}^{(Q E)}\right]^{2} \frac{Q^{2}}{2 M^{2}}+\int d \nu\left[W_{2}^{\nu n}\left(Q^{2}, \nu\right)-W_{2}^{\nu p}\left(Q^{2}, \nu\right)\right]=2
$$

Using for QE
$g_{1 V}^{(Q E)}=\frac{1}{D_{V}}$,
$g_{2 V}^{(Q E)}=\frac{3.7}{D_{V}}$,
$g_{1 A}^{(Q E)}=\frac{1.23}{D_{A}}$.

Adler sum Rule is satisfied with a 10% accuracy

Summary

- We present a general formalism for analysing the excitation of resonances by electrons and neutrinos
- We use recent data on helicity amplitudes from JLab and Mainz accelerator to determine the electromagnetic and weak vector form form factors including their Q^{2}-dependences
- For the isospin-1/2 resonances the form factors fall down not so fast as for the Δ. For $P_{11}(1440)$ and $S_{11}(1535)$ fall off, at small Q^{2}, is even slower than dipole.
- Δ resonance description shows good agreement with the data, second resonance region must be observable in experiments for $E_{\nu}>2 \mathrm{GeV}$
- Quark-hadron duality for CC neutrino scattering is satisfied in the region $Q^{2}=0.2-1.5 \mathrm{GeV}^{2}$ for the $\left(F_{2}^{\nu p}+F_{2}^{\nu n}\right) / 2$ at the level of $\sim 20 \%$. The Adler sum rule is satisfied with a 10% accuracy.

Other topics

Cross section for $\nu_{\mu} p \rightarrow \mu^{-} \Delta^{++} \rightarrow \mu^{-} p \pi^{+}$

$\left\langle E_{\nu}\right\rangle \sim 1 \mathrm{GeV}$

$\left\langle E_{\nu}\right\rangle \sim 7 \mathrm{GeV}$

$\left\langle E_{\nu}\right\rangle \sim 1 \mathrm{GeV}$
case (1): $C_{5}^{A}\left(Q^{2}\right)=\frac{C_{5}^{A}(0)}{D_{A}} \cdot \frac{1}{1+\frac{Q^{2}}{\mathbf{3} M_{A}^{2}}}$
case (2): $C_{5}^{A}\left(Q^{2}\right)=\frac{C_{5}^{A}(0)}{D_{A}} \cdot \frac{1}{1+\frac{\mathbf{2} Q^{2}}{M_{A}^{2}}}$
Paschos, O.L. PRD 71 (2005) 074003

Olga Lalakulich, May 5, 2006, JLab Workshop. -р.30133

Cross section for $\nu_{\mu} p \rightarrow \mu^{-} \Delta^{++} \rightarrow \mu^{-} p \pi^{+}$

$E_{\nu} \sim 15-40 \mathrm{GeV}$

$\left\langle E_{\nu}\right\rangle \sim 54 \mathrm{GeV}$

$\left\langle E_{\nu}\right\rangle \sim 54 \mathrm{GeV}$

The low Q^{2} region still to be determined and understood precisely.
Factors, which decrease the cross section are: 1) Pauli blocking Paschos, Sakuda, Yu PRD 69
(2004) 014013 2) muon mass effects Paschos, O.L., PRD 71 (2005) 074003

For the $d \sigma / d Q^{2}$ lepton mass effects are noticable at low Q^{2} for small neutrino energies.

τ-production: $\nu_{\tau} p \rightarrow \tau^{-} \Delta^{++} \rightarrow \tau^{-} p \pi^{+}$

Taking into account nonzero mass if the final lepton reduces the cross section in two ways:

1) due to the kinematical restrictions on the phase space available
2) due to the "small" structure functions \mathcal{W}_{4} and \mathcal{W}_{5}

red line: both effects are taken into account
green line: only the reduction of the phase space is taken into account; $\left(\mathcal{W}_{4}=\mathcal{W}_{5}=0\right)$ blue line: structure functions in the partonic limit: $\mathcal{W}_{4}=0, \mathcal{W}_{5}=\mathcal{W}_{2} / 2 x$

Background

(very preliminary !)

Motivation: simplicity, only noninterfering background can be introduced in such a way Problem: to introduce a single function background $\left(Q^{2}, W\right)$ in such a way that it can be added to any differential ot integrated cross section

Question: for what quantity(ies) should such background be introduced?
My answer: for the structure functions!

$F_{2}^{b g r}=F_{2}^{J L a b}-F_{2}^{R E S}$
$F_{2}^{J L a b}$ is experimental data on the structure function from JLab experiment M. Osipenko et al., PR C73 (2006) 045205; hep-ex/0507098
$F_{2}^{R E S}$ is calculated in our model

Another way to extract $F_{2}^{b g r}$ — from old virtual photoproduction data F.W. Brasse et al., NP
B110 (1976) 413 - gives similar result

