MAID : Mainz Unitary Isobar Model

An experimentalist's view

Mark K. Jones, Jefferson Lab

MAID : Mainz Unitary Isobar Model

An experimentalist's view

Mark K. Jones, Jefferson Lab

<u>Outline</u>

- Quick overview of pion photo- and electroproduction
- Description of MAID
- Comparison between MAID and experimental data.

Pion Production Reaction

 $\gamma^{\star}N$ center-of-mass

 $\frac{d\sigma}{d\Omega_{cm}} = R_t + \epsilon R_l + \epsilon R_{tt} \cos 2\phi^* + \nu_{lt} R_{lt} \cos \phi^* + h\nu_{lt'} R_{lt'} \sin \phi^*$

 R_i depend on W,Q^2 , $heta^\star$

Additional R_i by spin observables. 36 total!

• $R_i \rightarrow hel. amps H_1...H_6$

■ $H_1...H_6$ → multipoles $E_{l\pm}$, $M_{l\pm}$ and $S_{l\pm}$ which depend on W and Q^2 .

Pion Production diagrams

Resonance multipoles in MAID

Isobar model \rightarrow resonances have Breit-Wigner form $A_{l\pm}(W,Q^2) = \bar{A}_{l\pm}(Q^2) f_{\gamma N^{\star}}(W) \frac{\Gamma_{\text{tot}} W_R e^{i\phi}}{W_R^2 - W^2 - iW_R \Gamma_{\text{tot}}} f_{\pi N^{\star}} I_{\pi N^{\star}}$

- $\bar{A}_{l\pm}(Q^2)$ are the electromagnetic amplitudes.
- $f_{\gamma N^{\star}}$ parametrizes the W dependence of the γNN^{\star} vertex.
- $f_{\pi N^*}$ describes N^* decaying with $\Gamma_{tot} = \Gamma_{\pi N} + \Gamma_{inel}$ and mass W_R .
- Unitarized by $e^{i\phi} \rightarrow$ phase of total multipole equals πN phase shift. Higher γ energies unitarity is achieved differently.
- Resonances are dressed. All four star resonances included.

Non-resonance multipoles in MAID

Described with effective Lagrangian

- Born terms
 - $L_{\gamma NN}$ and $L_{\gamma \pi \pi}$ are well defined
 - $L_{\pi NN}$ described by mixed pseudovector and pseudoscaler πNN coupling.
 - PV dominates at low γ energy \rightarrow PS at high γ energy
- Vector meson exchange contribution $M = \rho, \omega$
 - $L_{\gamma\pi M}$ well defined
 - For L_{MNN} , the couplings constants and cut-offs are free parameters

Pion production experiments

- Experimental Facilities
 - Pion photoproduction at LEGS, GRAAL, Spring-8, MAMI, ELSA
 - Pion electroproduction at MIT-Bates, MAMI, JLab
- Major characteristics of experiments
 - Intense highly polarized beams
 - Large acceptance in θ^* and ϕ^* over large range of W and Q²
 - Spin observables by polarized target, recoil polarization.

JLab experiments

- Large Acceptance Spectrometer (CLAS) in Hall B
 - Large 4π detector for coverage of θ^* and ϕ^* over large range of W and Q^2 .
 - Detect $p\pi^{\circ}$ and $n\pi^{+}$ final states for isospin decomposition.
 - Polarized target \rightarrow additional R_i
- High Resolution Spectrometers (HRS) in Hall A
 - High luminosity
 - \rightarrow recoil polarization \rightarrow additional R_i
 - Kinematic focusing of πN system allows reasonble θ^* and ϕ^* over narrow range of W and Q^2 .
- High Momentum and Short Orbit Spec (HMS/SOS) in Hall C
 - High luminosity \rightarrow high $Q^2 = 7.7$

Δ (1232) Magnetic Form Factor

- Measure $\frac{d\sigma}{d\Omega_{cm}}$ over wide range of Q^2 with full θ^*, ϕ^* coverage.
- Assume M₁₊
 dominance
- Truncate $l \leq 2$
- Fit $\frac{d\sigma}{d\Omega_{cm}}$ and extract M_{1+}, E_{1+}, S_{1+}
- $G_M \propto M_{1+}$

CLAS data, $p(e, e'n)\pi^+$, $Q^2 = 0.3$

Comparison to MAID2003, Sato-Lee models.

CLAS data, $p(e, e'n)\pi^+$, $Q^2 = 0.3$

More data $0.25 < Q^2 < 0.65$

Hall B , Polarized target $\vec{p}(\vec{e},e'p)\pi^\circ$

$$V = 1.225, Q^2 = 0.46$$

- Beam-target asymmetry, A_{et} .
 - Dominated by M_{1+}
 - models similar in A_{et} prediction.
- Target asymmetry, A_t .
 - sensitive to interference between non-resonant and resonant amplitudes.
 - Differences in models appear.

Comparison to MAID2003, Sato-Lee, SAID, DMT models.

Extract multipoles from data

Summary

- MAID is a unitary isobar model for partial wave analysis of single pion photo- and electro-production in the resonance region.
- Initial web version in 1998. The present web version is MAID2003 (http://www.kph.uni-mainz.de/MAID/)
- MAID2003 has parameters which have been fit to a world data set.
- Showed comparisons between MAID and data (not included in fit).
- New version MAID2005 has been developed (nucl-th/0603012) but not yet available from the web.
- L. Tiator et al, EPJ A 19 (2004) and D. Drechsel et al. Nucl. Phys. A645 (1999)