Nucleon and Nuclear Structure Function Measurements in the resonance region at low Q²

Eric Christy

Hampton University

Workshop on Intersections of Nuclear Physics with Neutrinos and Electrons

JLab – May 4, 2006

JLab has a large program of structure function measurements in the resonance region at low Q².

This talk will focus on unpolarized structure function measurements in Hall C and specifically ...

Longitudinal and Transverse (L/T) separated structure functions, F_1 , F_L , and

 $F_2 = (2xF_1 + F_L)/(1+M^2x^2/Q^2),$

for nucleons and in nuclei

=> learn about medium modifications / nuclear effects (ie. distinguish various models of EMC)

Rosenbluth Separation

ao/dΩ/dE

Reduced cross-section:

$$\frac{1}{\Gamma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega \mathrm{d}\mathrm{E}'} = \sigma_{\mathrm{T}}(\mathrm{x}, \mathrm{Q}^2) + \varepsilon \sigma_{\mathrm{L}}(\mathrm{x}, \mathrm{Q}^2)$$

■ Fit reduced cross section linearly with ɛ at fixed W² and Q² (or x, Q²).

Linear fit yields: $\sigma_{L} = Slope$ $\sigma_{T} = Intercept$ *Extraction of F₂ depends on* $R = \sigma_{I} / \sigma_{T}$ and ε !

Proton L/T Separated SFs (E94-110)

Large body of high precision resonance data ($0.3 < Q^2 < 4.5$) - links smoothly to DIS data set.

Duality observed in both transverse and longitudinal structure functions.

Hardly any L/T for nuclear targets at the JLab kinematics.

Resonance region fit to σ_{τ} <u>AND</u> σ_{μ} available

4

Duality Averaged Proton Data

Global Fitting of DIS + Ave. Resonance data

Finite mass nucleon => modification of scaling limit structure functions.

Prescription due to Geogi & Politzer '76 $F_{2}(x,Q^{2}) = \frac{x^{2}}{\kappa^{3}} F_{2}^{bg}(\xi) + 6 \frac{M^{2}}{Q^{2}} \frac{x^{3}}{\kappa^{4}} \int_{\xi}^{1} dx' F_{2}^{bg}(x') + 12 \frac{M^{4}}{Q^{4}} \frac{x^{4}}{\kappa^{5}} \int_{\xi}^{1} dx' \int_{x'}^{1} dx'' F_{2}^{bg}(x'')$ Structure Function + TM Fit E94-110 Duality Averaged Structure Function Fit DIS DATA 0.4 With the M=0 structure function given $\Omega^2 = 1.5$ 0.2 by $F_{2}^{M=0} = X^{2} F_{2}^{bg}$ 0.4 L P $\Omega^2 = 3$ 0.2 0.4 **Parameterize F** $_{2}^{M=0}$ (x,Q²) and fit F $_{2}$ (x,Q²) to $\Omega^2 = 4.5$ 0.2 world data set 0.4 $\Omega^2 = 6$ 0.2 (duality averaged data used to constrain large x) 0.4 $\Omega^2 = 7.5$ procedure similar to radiative unfolding 0.2 0 0.2 0.5 0.6 0.8 0.9 0.1 0.3 0.4 0.7

X

7

- For F₁ only L/T separated data are fit (much more limit data set).
- Need L/T separated data for x < 0.2 and $Q^2 > 3!$
- F₁ is determined from F₂ & F₁ fits.

L/T Separated Structure Functions on Nuclei (JLab E02-109, E04-001 and E06-009)

•<u>L/T Separation Data:</u> Targets: D, C, Al, Fe - Final uncertainties 1.6 % pt-pt in ε (2% normalization) - essentially, duplicate proton data.

Data from Jan '05

Approved future running

Inclusive cross sections in Hall C

 H_2 , E = 3.489 GeV, $\Theta = 14$

12

- Efficiency corrected e- yield HMS
- ** For cryo targets, subtract empty target background
- Subtract charge symmetric e- yield (e+ yields measured in SOS)
- Apply acceptance corrections.
- Apply radiative corrections.

Preliminary Cross Section Results

E_{Beam} = 2.3 GeV, Target = C

 \succ Only inelastic data shown.

Heavy targets: fits to DIS data ($F_2 \& R$) + y-scaling QE model.

region data.

Low Q² Cross Sections

Nuclear Structure Functions

Arrington, Keppel, Ent, Niculescu PRC73:045206 (2006)

New data: Jlab E03-103 - EMC in light nuclei

- EMC effect is the same in resonance region as in DIS.
- Data will provide precision data
- on A-dependence of EMC effect
- => help distinguish models of EMC
- Can determine Q² at which duality
- in EMC breaks down.

 $W^2 \sim 4 GeV^2$

Summary

- Proton L/T separated SFs measured in RR for 0.3 < Q² < 4.5.</p>
- RR cross section fit available for proton data constrained to

 $Q^2 = 0.$

18

- SF fit performed to world DIS + RR duality data including TM.
- Preliminary low Q² data for RR L/T SFs in nuclei (larger Q² to come)
- Preliminary EMC data for light nuclei shown

=> duality in EMC observed.

Will help discriminate between various models for EMC.