Parity-Violating Electron Scattering & Strangeness in the Nucleon

Workshop on Intersections of Nuclear Physics with Neutrinos and Electrons Jefferson Lab May 4 2006

Outline

- Parity-violation in electron scattering
- Elastic Vector Strange Form Factors: G_{E}^{s} and G_{M}^{s}
- First generation results: HAPPEX-I, SAMPLE, PV-A4
- Latest results:
 - GO (forward-angle)
 - HAPPEX-II and HAPPEX-Helium
- The present situation at $Q^2 = 0.1 (GeV/c)^2$
- The future...

Parity Violating Electron Scattering \rightarrow Weak NC Amplitudes

Interference: $\sigma \sim |M^{EM}|^2 + |M^{NC}|^2 + 2Re(M^{EM*})M^{NC}$

Interference with EM amplitude makes Neutral $\longrightarrow A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\left|M_{PV}^{NC}\right|}{\left|M_{PV}^{EM}\right|} \sim \frac{Q^2}{(M_Z)^2}$ Current (NC) amplitude accessible

Tiny (~10⁻⁶) cross section asymmetry isolates weak interaction

Form Factors

$$J_{\mu}^{EM} = \sum_{q} Q_{q} \left\langle \overline{N} \left| \overline{u}_{q} \gamma_{\mu} u_{q} \right| N \right\rangle = \overline{N} \left[\gamma_{\mu} F_{1}^{\gamma} + \frac{i \sigma_{\mu\nu} q^{\nu}}{2M_{N}} F_{2}^{\gamma} \right] N$$

Adopt the Sachs FF: $G_E^{\gamma} = F_1^{\gamma} + \tau F_2^{\gamma}$ $G_M^{\gamma} = F_1^{\gamma} + F_2^{\gamma}$ (Roughly: Fourier transforms of charge and magnetization)

NC probes same hadronic flavor structure, with different couplings:

$$G_{E/M}^{\gamma} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} G_{E/M}^{d} - \frac{1}{3} G_{E/M}^{s}$$
$$G_{E/M}^{Z} = \left(1 - \frac{8}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{u} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d}$$

 $G^{Z}_{E/M}$ provide an important new benchmark for testing non-perturbative QCD structure of the nucleon

Charge Symmetry

One expects the neutron to be an isospin rotation of the proton*:

$$G_{E/M}^{p,u} = G_{E/M}^{n,d}, \quad G_{E/M}^{p,d} = G_{E/M}^{n,u}, \quad G_{E/M}^{p,s} = G_{E/M}^{n,s}$$

*Neglecting trivial breaking due to Coulomb force

Isolating the form factors:
vary the kinematics or target
For a proton:
$$A = \left[\frac{-G_E Q^2}{4\pi c \sqrt{2}}\right] \frac{A_E + A_M + A_A}{\sigma_p} \quad \sim \text{few parts per million}$$
$$A_E = \mathcal{E} G_E^p G_E^Z, \quad A_M = \tau G_M^p G_M^Z, \quad A_A = -\left(1 - 4\sin^2 \theta_W\right) \mathcal{E} G_M^p G_A^e$$
$$\boxed{\text{Forward angle}} \qquad \boxed{\text{Backward angle}}$$
$$G_{E,M}^Z = (1 - 4\sin^2 \theta_W)(1 + R_V^p) G_{E,M}^p - (1 + R_V^n) G_{E,M}^n - G_{E,M}^s$$
$$G_A^e = -G_A + \Delta s + \eta F_A + R^e$$

For ⁴He: G_{E}^{s} alone (but only available at low Q²) $A_{PV} = \frac{G_{F}Q^{2}}{\pi\alpha\sqrt{2}} \left[\sin^{2}\theta_{W} + \frac{G_{E}^{s}}{2(G_{E}^{p} + G_{E}^{n})} \right]$

For deuterium: enhanced G_A^e sensitivity

Measurement of P-V Asymmetries

 $A_{LR} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_I} \approx 10^{-6}$ 5% Statistical Precision on 1 ppm -> requires 4x10¹⁴ counts

Rapid Helicity Flip: Measure the asymmetry at 10⁻⁴ level, 10 million times

Statistics: high rate, low noise Systematics: beam asymmetries, backgrounds, Helicity correlated DAQ Normalization: Polarization, Linearity, Background

Early History: Tests of Weinberg-Salam-Glashow

- C. Prescott, et al. SLAC E122 DIS on deuterium Phys. Lett. 77B, 3 47 (1978), Phys. Lett. 84B, 524 (1979)
- W. Heil, et al. Mainz quasielastic ⁹Be Nucl. Phys. B327, 1 (1989)
- P. Souder, *et al.* MIT/Bates ¹²C elastic
 PRL 65, 694 (1990)

HAPPEX (first generation)

Hydrogen Target: E=3.3 GeV, θ =12.5°, Q²=0.48 (GeV/c)²

 A_A suppressed by $\varepsilon'(1-4\sin^2\theta_w)$ where $\varepsilon' = [\tau(1+\tau)(1-\varepsilon^2)]^{\frac{1}{2}} \approx (0.08)(0.08)$ here.

SAMPLE (MIT/Bates)

$Q^2({ m GeV}^2)$	$A_{PV}\left(ppm ight)$	$A_0+lpha G^s_M+eta G^e_A(T=1)$
$0.1, LH_2$	$-5.61 \pm 0.67 \pm 0.88$	$-5.56 + 3.37 rac{G^s}{M} + 1.54 rac{G^e}{A}$
$0.1, LD_2$	$-7.06 \pm 0.73 \pm 0.72$	$-7.06 + 0.72 rac{G_{M}^{s}}{M} + 1.66 rac{G_{A}^{e}}{M}$
$0.03, LD_2$	$-3.51 \pm 0.57 \pm 0.58$	$-2.14 + 0.27 rac{G_M^s}{M} + 0.76 rac{G_R^e}{M}$

$$G_{M}^{s} = 0.23 \pm 0.36 \pm 0.40$$

 $G_{A}^{e}(T=1) = -0.53 \pm 0.57 \pm 0.50$
E.J. Beise *et al.*, Prog Nuc Part Phys 54 (2005)

Results of Zhu *et al* commonly used to constrain G_{M}^{s} result: $G_{M}^{s} = 0.37 \pm 0.20_{stat} \pm 0.36_{syst} \pm 0.07_{FF}$

PV-A4 at Mainz

For Q²=0.108 (GeV/c)², 16× 10⁶ histograms \rightarrow 10¹³ elastic scattering events

PV-A4 (MAMI/Mainz)

Back Angle runs underway to separate G^{s}_{M} , G_{A} at additional points...

G⁰ (JLab - Hall C)

- LH_2/LD_2 target (20 cm) L = 2. 10³⁸ cm⁻² s⁻¹
- Superconducting toroidal magnetic_{Beam} spectrometer
 (Phase I)
- 16 "Rings" divided into 8 octants

Forward angle mode (completed):

• LH₂: E_e = 3.0 GeV

Recoil proton detection (52° < θ_p <76°) $0.12 \le Q^2 \le 1.0 \text{ (GeV/c)}^2$

 Counting experiment – separate backgrounds via time-of-flight Histograms built each 33 ms

E99-016, E01-115 and E01-116

GO Asymmetries (Forward-Angle)

- EM form factors: Kelly PRC 70 (2004) 068202
- A_{NVS} = "no vector strange" asymmetry = $A(G_{\text{E}}^{\text{s}}, G_{\text{M}}^{\text{s}} = 0)$
- inside error bars: *stat*, outside: *stat & pt-pt*

GO: Forward-angle results

 $G_{E}^{s} = G_{M}^{s} = 0$: Hypothesis excluded at 89% C.L.

D.S. Armstrong et al., PRL 95, 092001 (2005)

HAPPEX (second generation) E=3 GeV $\theta = 6^{\circ}$ Q²= 0.1 (GeV/c)² •Hydrogen : $G_{E}^{s} + \alpha G_{M}^{s}$ •Hydrogen : G_{E}^{s}

⁴He Preliminary Results

Raw Parity Violating Asymmetry

 A_{raw} correction ~ 0.12 ppm

HAPPEX-II 2005 Preliminary Results

HAPPEX-⁴He:

 $Q^2 = 0.0772 \pm 0.0007 (GeV/c)^2$ $A_{PV} = +6.43 \pm 0.23 \text{ (stat)} \pm 0.22 \text{ (syst) } ppm$

 $A(G^{s}=0) = +6.37 \text{ ppm}$ $G^{s}_{E} = 0.004 \pm 0.014_{(stat)} \pm 0.013_{(syst)}$

HAPPEX-H:

 $Q^2 = 0.1089 \pm 0.0011 (\text{GeV/c})^2$ $A_{PV} = -1.60 \pm 0.12 \text{ (stat)} \pm 0.05 \text{ (syst)} ppm$

A(G^s=0) = -1.640 ppm ± 0.041 ppm

 G_{E}^{s} + 0.088 G_{M}^{s} = 0.004 ± 0.011_(stat) ± 0.005_(syst) ± 0.004_(FF)

World Data near Q² ~0.1 GeV²

 $G_{M}^{s} = 0.28 + - 0.20$ $G_{E}^{s} = -0.006 + - 0.016$

~3% +/- 2.3% of proton magnetic moment ~0.2 +/- 0.5% of electric distribution

HAPPEX-only fit suggests something even smaller: $G_{M}^{s} = 0.12 + / - 0.24$

 $G_{\rm F}^{\rm s}$ = -0.002 +/- 0.017

Caution: the combined fit is approximate. Correlated errors and assumptions not taken into account

World data consistent with state of the art theoretical predictions

- Skyrme Model N.W. Park and H. Weigel, Nucl. Phys. A 451, 453 (1992).
- Dispersion Relation H.W. Hammer, U.G. Meissner, D. Drechsel, Phys. Lett. B 367, 323 (1996).
- Dispersion Relation H.-W. Hammer and Ramsey-Musolf, Phys. Rev. C 60, 045204 (1999).
- **19. Chiral Quark Soliton Model** A. Sliva *et al.*, Phys. Rev. D **65**, 014015 (2001).
- 20. Perturbative Chiral Quark Model -V. Lyubovitskij *et al.*, Phys. Rev. C 66, 055204 (2002).
- **21**. Lattice R. Lewis *et al.*, Phys. Rev. D **67**, 013003 (2003).
- 22. Lattice + charge symmetry -Leinweber et al, Phys. Rev. Lett. 94, 212001 (2005) & hep-lat/0601025

A Simple Fit (for a simple point)

Simple fit:

٠

GEs = r_s*τ
GMs = mu_s
Includes only data Q² < 0.3 GeV²
Includes SAMPLE constrainted with G_A theory and HAPPEX-He 2004, 2005
GO Global error allowed to float with unit constraint
Nothing intelligent done with form factors, correlated errors, etc.

- Quantitative values should NOT be taken very seriously, but some clear, basic points:
 - The world data are consistent.
 - Rapid Q² dependence of strange form-factors is not required.
 - Sizeable contributions at higher Q2 are not definitively ruled out. (To be tested by HAPPEX-III, G0 and A4 backangle.)

A Global Fit: R.D. Young, et al. nucl-ex/0604010

- all data $Q^2 < 0.3$, leading moments of G_{E^s} , G_{M^s}

G⁰ : Backward Angle

- Detect scattered electrons at $\theta_e \sim 110^\circ$ \rightarrow Need separate runs at E = 362, 687 MeV for Q² = 0.23, 0.63 (GeV/c)² for both LH₂ and LD₂ targets
- Get G^{s}_{M} and G_{A}
 - Additional detectors:
 - Cryostat Exit Detectors (CED) to separate elastic/inelastic e
 - Cerenkov detectors for π rejection

First Run - just completed (last weekend)

HAPPEX-III (2008)

Paschke & Souder, E05-109

Conclusions

• *Marvelous* consistency of data, *esp.* at $Q^2=0.1 \text{ GeV}^2$.

- $Q^2 = 0.1 \text{ GeV}^2$ data: $G^s{}_M$ and $G^s{}_E$ consistent with zero; constraining axial FF to Zhu *et al.* theory favors positive $G^s{}_M$
- Still room (& hints?) for non-zero values at higher Q^2

Future:

- GO Backward: will allow G^{s}_{M} and G^{s}_{E} separation at two Q^{2}
- Mainz: PV-A4 backward-angle program underway
- HAPPEx-III: high precision forward-angle @ $Q^2 = 0.6 \text{ GeV}^2$
- Qweak: Standard Model test at low Q² (2009)

Backup Slides

Two Photon Exchange

- 1. Beyond single boson exchange in electroweak interference:
 - $\gamma\gamma$ and γZ box and crossing diagrams.
 - effects appear small at large ϵ and small Q^2
 - not a concern at present experimental precision.
- 2. Electromagnetic Form Factors used to extract strange form factors:
 - which form factors to use?
- 3. Transverse Asymmetry/Beam normal asymmetry/Vector analyzing power:
 - Background" to PV measurements, if electron beam not 100%
 Iongitudinal and detectors not perfectly symmetric.
 - interesting in its own right imaginary parts of TPE.

Validity of charge symmetry assumption $u \leftrightarrow d$ $G_{E,M}^{u,p} = G_{E,M}^{d,n}$ $G_{E,M}^{d,p} = G_{E,M}^{u,n}$ $G_{E,M}^{s,p} = G_{E,M}^{s,n}$

Size of charge symmetry breaking effects in some n,p observables:

- n p mass difference $\rightarrow (m_n m_p)/m_n \sim 0.14\%$
- polarized elastic scattering $\vec{n} + p$, $\vec{p} + n \Delta A = A_n A_p = (33 \pm 6) \times 10^{-4}$ Vigdor et al, PRC <u>46</u>, 410 (1992)
- Forward backward asymmetry n + p \rightarrow d + π^{0} A_{fb} ~ (17 ± 10)x 10⁻⁴ Opper et al., nucl-ex 0306027 (2003)

→ For vector form factors theoretical CSB estimates indicate < 1% violations (unobservable with currently anticipated uncertainties)
 Miller PRC <u>57</u>, 1492 (1998) Lewis & Mobed, PRD <u>59</u>, 073002(1999)

Strange Quark Contribution to Proton

http://www.npl.uiuc.edu/exp/G0/Forward

EM Form Factors

Electromagnetic form factors parameterized as by: Friedrich and Walcher, Eur. Phys. J. A, **17**, 607 (2003)

Time of Flight Spectra

Time of flight spectra for all 16 detectors of a single octant - recorded every 33 ms

Positive Background Asymmetries

- Det. 12-16 see smoothly varying peak in background asymmetries
 - maximum magnitude ~ +45 ppm
- Source is protons from hyperon weak decay scattering inside spectrometer
 - GEANT simulation with generator for hyperon production based on CLAS data
 - simulate both Λ and $\Sigma^{\text{+,0}}$ decays
 - polarization transfer for Λ 100%
 - assume 70% for Σ^{+}
 - Σ^0 asymmetry scaled by further factor of -1/3 (CG coefficient)
 - simulation explains source; use measured data for actual analysis

"Side-band" background correction

- Asymmetry and yield measured on either side of elastic peak

-> smooth interpolation is simple

"Side-band" background correction @ larger Q²

- Background asymmetry 'large' & varying significantly under elastic peak

Positive Background Asymmetries: GEANT

GO: Asymmetry with EW Radiative Corrections

• Full form of asymmetry used to extract $G_{E}^{s} + \eta G_{M}^{s}$

$$A = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{1}{\varepsilon G_E^{p^2} + \tau G_M^{p^2}} \left\{ \left(1 - 4\sin^2\theta_W \right) \left(\varepsilon G_E^{p^2} + \tau G_M^{p^2} \right) \left(1 + R_V^p \right) - \left(\varepsilon G_E^p G_E^n + \tau G_M^p G_M^n \right) \left(1 + R_V^n \right) - \left(\varepsilon G_E^p G_E^s + \tau G_M^p G_M^s \right) \left(1 + R_V^{(0)} \right) - \varepsilon' \left(1 - 4\sin^2\theta_W \right) G_M^p G_A^e \right\}$$

where

$$G_A^e = -G_A^p \left(1 + R_A^{T=1}\right) + \left[\frac{1}{2} \left(3F - D\right)R_A^{T=0} + \Delta s \left(1 + R_A^{(0)}\right)\right]G_A^{dip}$$

and

$$G_{A}^{p} = g_{A}G_{A}^{dip} = (F+D)G_{A}^{dip} = \frac{g_{A}}{(1+Q^{2}/\Lambda_{A}^{2})^{2}}$$

Simple Fits to World Hydrogen Data

• Fit
$$G_{E}^{s}(Q^{2}) + \eta(Q^{2}, E_{i})G_{M}^{s}(Q^{2}) =$$

 $\frac{4\pi\alpha\sqrt{2}}{G_{F}Q^{2}}\frac{\varepsilon G_{E}^{p^{2}} + \tau G_{M}^{p^{2}}}{\varepsilon G_{E}^{p}(1+R_{V}^{(0)})}(A_{phys} - A_{NVS}(Q^{2}, E_{i}))$
with simple forms for G_{M}^{s} , G_{E}^{s}
 $G_{E}^{s}(Q^{2}) = \frac{c_{2}Q^{4}}{1+d_{1}Q^{2}+d_{2}Q^{4}+d_{3}Q^{6}}$ à la Kelly
 $G_{M}^{s}(Q^{2}) = \frac{G_{M}^{s}(Q^{2}=0)}{(1+Q^{2}/\Lambda_{M}^{s^{-2}})^{2}}$
with

with

 $G_M^s \left(Q^2 = 0\right) = 0.81$ from Q² = 0.1 GeV² plot, dipole ff

HAPPEx

Error Budget-Helium

2005

2004

False Asymmetries	48 ppb
Polarization	192 ppb
Linearity	58 ppb
Radiative Corrections	6 ppb
Q ² Uncertainty	58 ppb
Al background	32 ppb
Helium quasi-elastic background	24 ppb
Total	216 ppb

False Asymmetries	103 ppb
Polarization	115 ppb
Linearity	78 ppb
Radiative Corrections	7 ppb
Q ² Uncertainty	66 ppb
Al background	14 ppb
Helium quasi-elastic background	86 ppb
Total	205 ppb

2005 Error Budget-Hydrogen 2004

False Asymmetries	17 ppb
Polarization	37 ppb
Linearity	15 ppb
Radiative Corrections	3 ppb
Q ² Uncertainty	16 ppb
Al background	15 ppb
Rescattering Background	4 ppb
Total	49 ppb

False Asymmetries	43 ppb
Polarization	23 ppb
Linearity	15 ppb
Radiative Corrections	7 ppb
Q ² Uncertainty	12 ppb
Al background	16 ppb
Rescattering Background	32 ppb
Total	63 ppb

Asymmetry explicitly depends on Q²:

$$A_{PV} = \frac{-G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \left\{ \left(1 - 4\sin^{2}\theta_{W}\right) - \frac{\varepsilon G_{E}^{p}(G_{E}^{n} + G_{E}^{s}) + \tau G_{M}^{p}(G_{M}^{n} + G_{M}^{s})}{\varepsilon (G_{E}^{p})^{2} + \tau (G_{M}^{p})^{2}} \right\}$$

$$Q^2 = 2EE'(1-\cos\theta)$$

Goal:
$$\delta_{Q^2} < 1\%$$

Q² measured using standard HRS tracking package, with reduced beam current

- Central scattering angle must be measured to $\delta \theta$ < 0.5%
- Asymmetry distribution must be averaged over finite acceptance