MDI and detector modeling

Nikolai Terentiev (Carnegie Mellon U./Fermilab)

On behalf of N. Mokhov, S. Striganov (Fermilab), C. Gatto, A. Mazzacane, V. Di Benedetto (INFN/Fermilab/INFN Lecce and Università del Salento) Muon Accelerator Program Meeting

February 28 - March 4, 2011 Jefferson Lab

Outline

- Recent MARS modeling results
- ILCroot status and development
- ILCroot CLICCT hits (tracker + vertex detectors) for MARS background
- Merging MARS background with muon physics events
- Conclusion

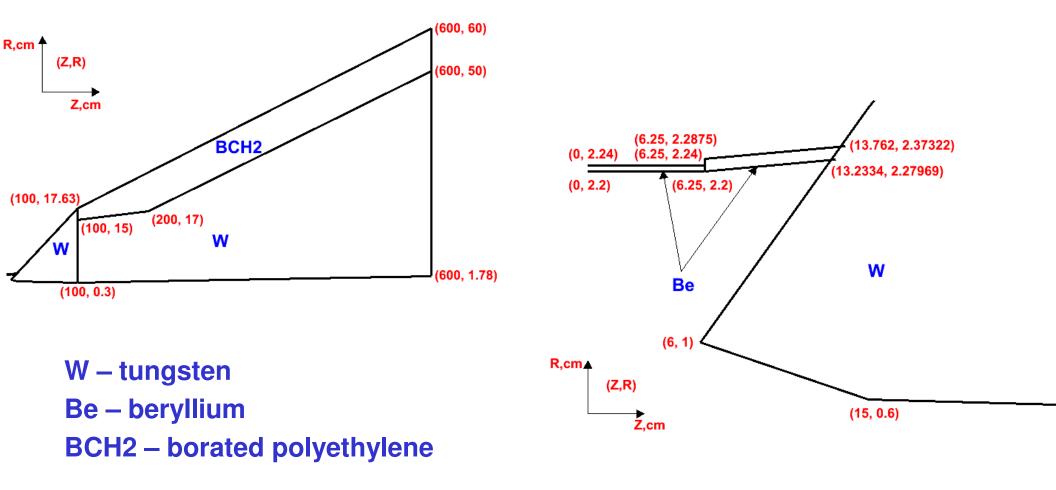
• The most recent MARS modeling results

(N. Mokhov. S. Striganov, Fermilab)

- MARS15 Monte Carlo code for simulation of particle transport and interactions in accelerator, detector and shielding components
 - New release available since Feb. 24, 2011, see http://www-ap.fnal.gov/MARS/
- New features in muon collider background modeling:
 - Refined MDI (Machine-Detector Interface) with a 10^o nozzle
 - Significant reduction of particle statistical weight variation
 - Calculated background source term at the interface surface for both beams

Sources of background at Muon Collider

- Muon beam decays is the major source: detector irradiation by particle fluxes from beam line components and accelerator tunnel.
 For 750 GeV muon beam of 2*10¹² - 4.3*10⁵ decays/m per bunch crossing, or 1.3*10¹⁰ decays/m/s for two beams.
- IP incoherent e+e- pair production, ~3*10⁴ e+e- pairs per bunch crossing
- IP $\mu^+\mu^-$ collisions negligible
- At large radii beam halo, Bethe-Heitler muon flux

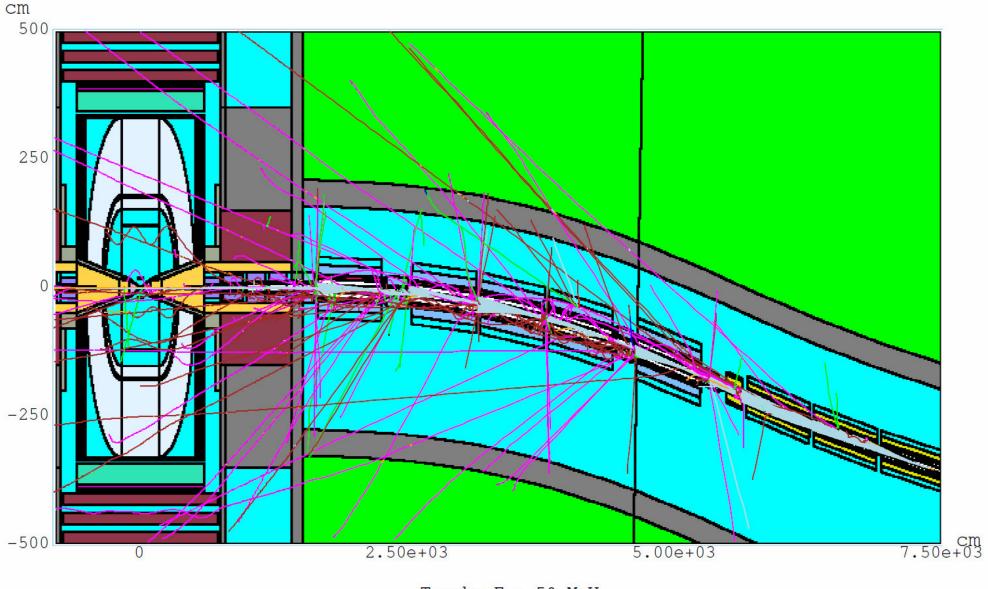

Means to suppress background

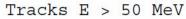
- Collimating nozzle at IP, detector magnetic field
- ~10T dipole magnets to sweep decay electrons in IR (interaction region), with tungsten masks in between
- Currently achieved reduction of machine background is
 ~ 3 orders of magnitude (depends on the nozzle angle)

• 10⁰ nozzle geometry

General view

Zoom in beam pipe




Physics

Carnegie Mellon

Particle Tracks in IR

- Reducing Weight Fluctuations Key for Detector Modeling
 - Statistical weight W spread has been substantially reduced recently. Internal MARS weight fluctuations came predominantly from modeling of low-energy electromagnetic and hadronic showers as well as from photo- and electro-nuclear hadron and muon production algorithms.
 - These are now user-controlled by material dependent switches between exclusive, inclusive and hybrid modes.
 - Inclusive approach: multiparticle interaction results are represented by fixed number of particles with weights proportional to partial mean multiplicities.
 - Exclusive simulation: majority of particles with W~1, but much more particles per event and as a result substantial increase of CPU time per event (7 days on 24 CPU for MARS simulation of background from ~ 0.5M decays in one muon beam).

• Available since Nov. 18, 2010

(http://www-ap.fnal.gov/~strigano/mumu/mixture/)

- 750 GeV 2e+12 μ^+ and μ^- beams
- 10^o nozzle geometry
- "Short-range" source term: 4.8e+05 simulated decays for each beam

-25m < Z < 1m for μ^+ beam

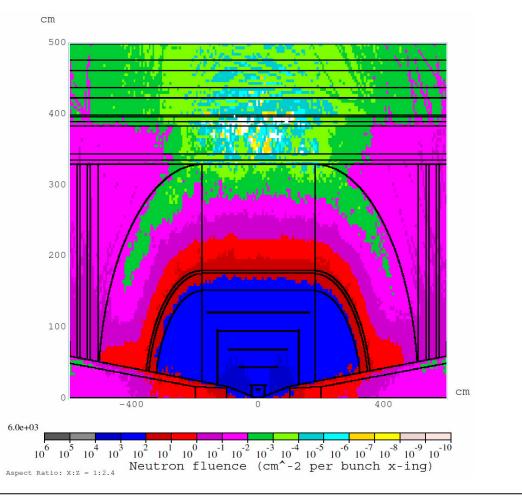
-1m < Z < 25m for μ^{-} beam

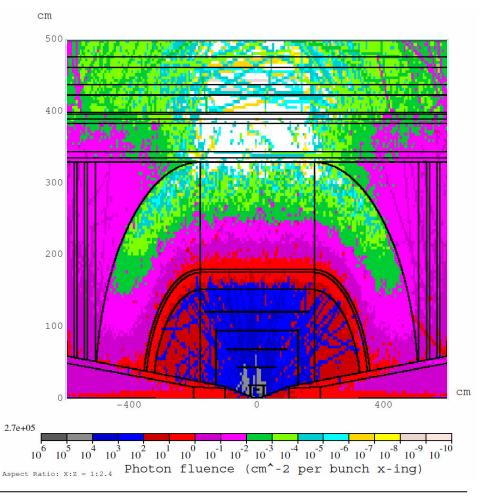
each source term file has about 5M particles

• "Long-range" source term: 2.4e+07 simulated decays for each beam

-189m < Z < -25 m for $\mu^{\scriptscriptstyle +}$ beam

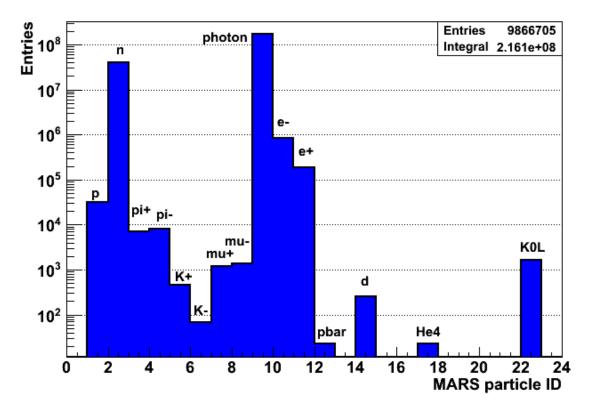
25m < Z < 189 m for μ^- beam


each file has about 0.44M particles (mostly muons)



Neutron and Photon Fluences

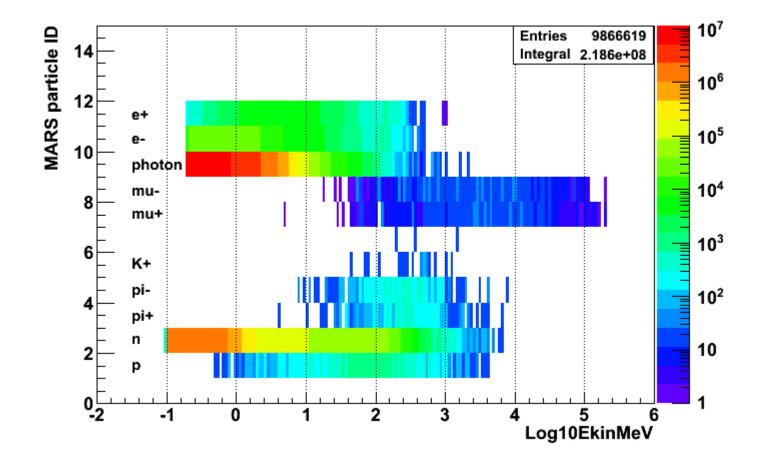
Neutron peak/yr = 0.1xLHC@10³⁴ Neutrons



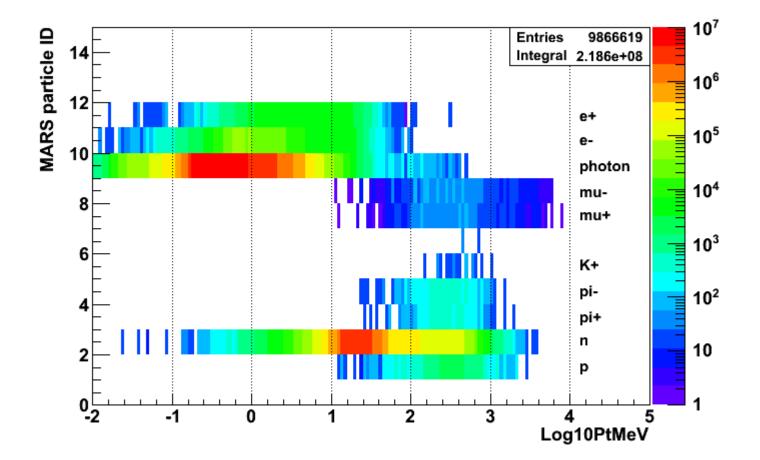
N. Terentiev (CMU/Fermilab) Muon Accelerator Program Meeting, JLab, March 2, 2011

• MARS particle ID's absolute yields (with weights) on the 10^o nozzle surface

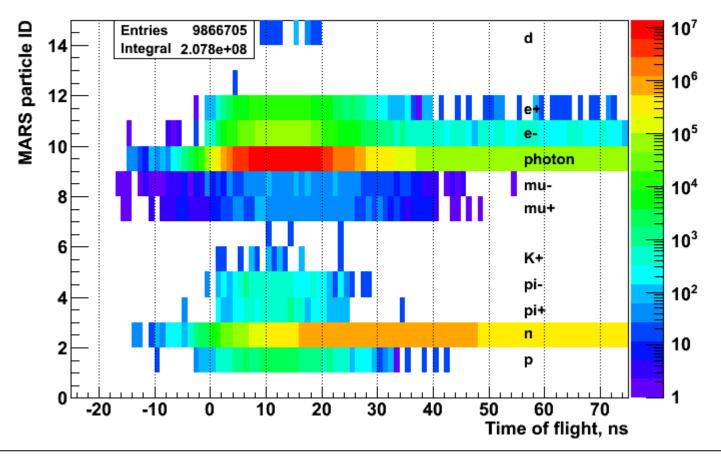
Abs. yields/bunch (E=750 GeV, both beams, 2.0e+12 muons each, L=26 m)


photon	n	e+-	р	π+-	μ+-
1.77e+08	0.40e+08	1.03e+06	3.13e+04	1.54e+04	0.26e+04*

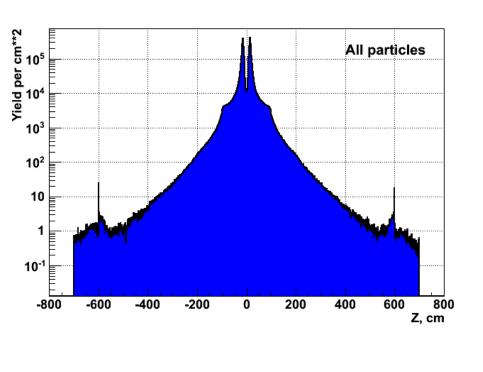
* for "short range" source, 0.82e+04 if "long range" source is added

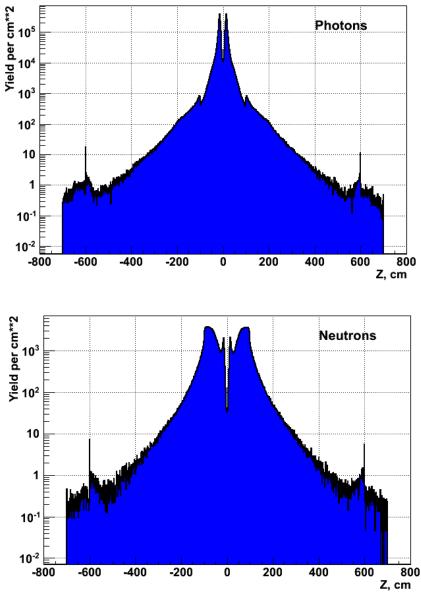


• MARS particle ID and E_{kin} (weights included, 10^o nozzle, "short range" source)



• MARS particle ID and P_t (weights included, 10^o nozzle, "short range" source)





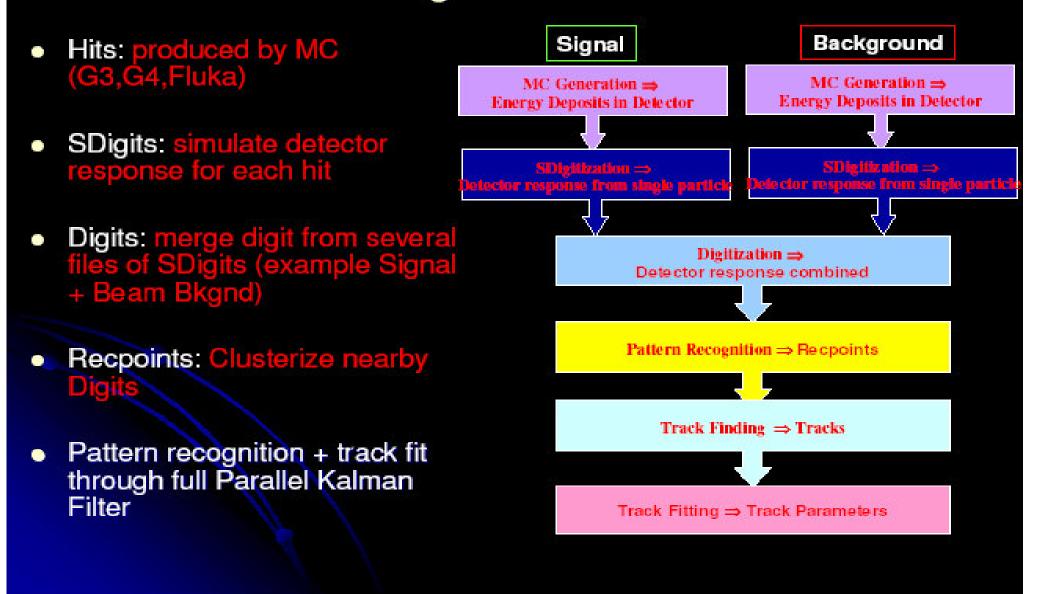
- MARS particle ID and TOF (weights included, 10^o nozzle)
 - Time of flight (TOF) wrt. bunch crossing time
 - 0 <= TOF <= 25 ns for ~21% of neutrons (~ 5 times reduction if use timing), ~76% of muons (from "short range" source), >94% of other particles

- Physics Carnegie Mellon
- MARS particles flux per bunch vs. Z (on the 10^o nozzle surface), weights included, "short range" source

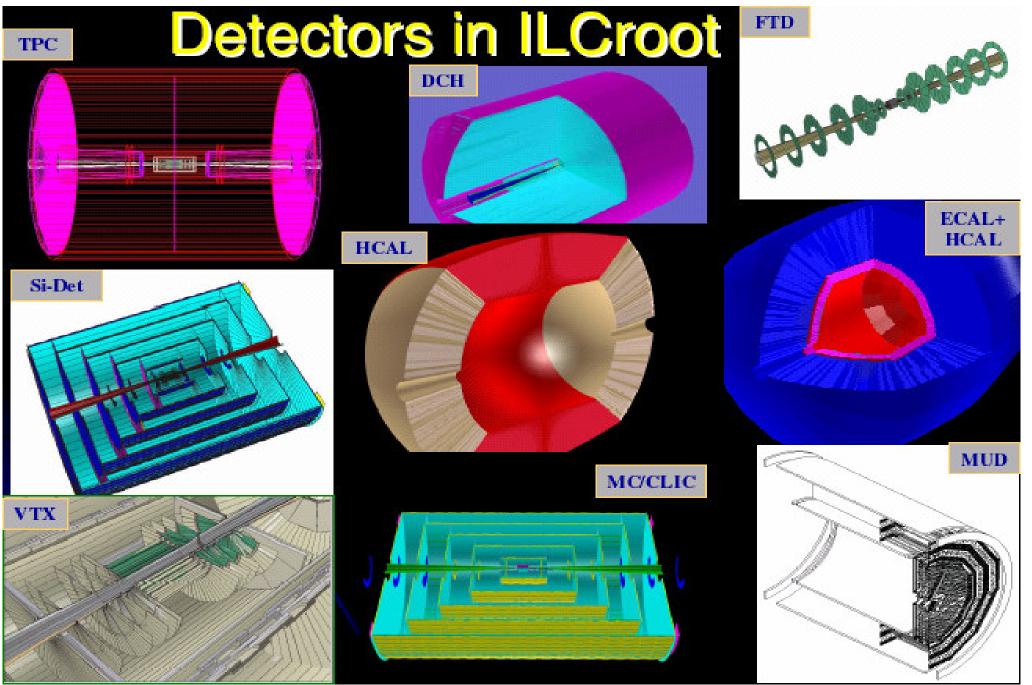
ILCroot: root Infrastructure for Large Colliders

Software architecture based on root, VMC & Aliroot

___All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)


- Extremely large community of users/developers
- Re-allignement with latest Aliroot version every 1-2
- It is a simulation framework and an Offline Systems:
 - Single framework, from generation to reconstruction and analysis!!
 - It naturally evolves into the offline systems of your experiment.
 - Six MDC have proven robustness, reliability and portability
- It is Publicly available at FNAL on ILCSIM since 2006

The Virtual Montecarlo (VMC) Concept


- Virtual MC provides a virtual interface to Monte Carlo
- It allows to run the same user application with all supported Montecarlo's
- The real Monte Carlo (Geant3, Geant4, Fluka) is selected and loaded at run time

Processing Flow of Full Simulation: detector hits + digitization + reconstruction

N. Terentiev (CMU/Fermilab) Muon Accelerator Program Meeting, JLab, March 2, 2011

MARS + ILCroot (Oct. 2009) Dedicated ILCroot framework for MUX Physics and background studies

(in collaboration with N. Mokhov group)

The ingredients:

- Final Focus descripted in MARS & ILCroot
- Detector description in ILCroot
- MARS-to-ILCroot interface (Vito Di Benedetto)

How it works

- The interface (ILCGenReaderMARS) is a TGenerator in ILCroot
- MARS output is used as a config file
- ILCGenReaderMARS creates a STDHEP file with a list of particles entering the detector area at z = 7.5m
- MARS weights are used to generate the particle multiplicity for G4.
- Threshold cuts are specified in Config.C to limit the particle list fed to G4
- Geant4 takes over at 7.5m
- Events are finally passed through the usual simulation (G4)-> digitization->reconstruction

ILCroot status and development



- Status of ILCroot simulation of physics events and MARS background in detector (INFN/Fermilab/CMU)
 - "ILCroot software infrastructure for Large Colliders based on ROOT and add-ons for Muon Collider studies", C. Gatto, (http://indico.fnal.gov/conferenceDisplay.py?confld=3634)
 - "Preliminary studies of the production of a single Z0 in a fusion process using ILCroot", V. Di Benedetto, (http://indico.fnal.gov/conferenceDisplay.py?confld=3727 http://indico.fnal.gov/conferenceDisplay.py?confld=3887)
 - "Tracking in ILCroot with different nozzles", A. Mazzacane, (http://indico.fnal.gov/conferenceDisplay.py?confld=3750)
 - "ILCroot CLICCT Tracker Hits for Latest MARS Simulations", N. Terentiev,

(http://indico.fnal.gov/conferenceDisplay.py?confld=3996)

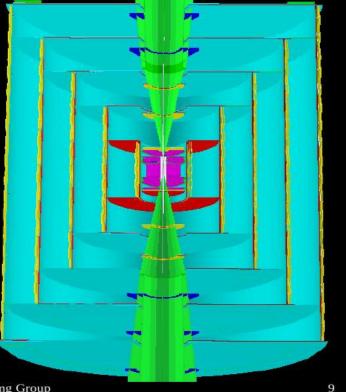
- Looking at CLICCT (CLICCT = VXD + SiT + FTD) response to ID specific particles:
 - Goals
 - What fractions of photons, neutrons and e⁺e⁻ make hits in sensitive volumes of CLICCT?
 - Their P_{tot} and P_t dependence?
 - Limited statistics MARS ROOT files were prepared having only ID specific background particles from both muon beams
 - Photons 1M (~0.5% of MARS photons full statistics)
 - Neutrons 1M (~2.5%)
 - e⁺e⁻ 0.046M (~5%)
 - Run ILCroot simulation on grid for these samples (use no weights)
 - Use official layout of CLICCT
 - Ignore the fact that MARS simulation is made for 10° nozzle while official ILCroot version is using 6° nozzle (impact of CLICCT/nozzle overlap is minor)

Tracking detectors for MC VXD + SiT + FTD + 10° nozzle

SIT VXD FTD Version SiD01-Polyhedra + SiD01 Guard ring: mm 0.07 Barrel Layers: 5 Total Tiles Barrel 7312 Wafer layout Si wafer 300 mm Carbonfiber in 0.228 mm Rohacell tickness 3.175 mm Carbonfiber out 0.228 mm 300 mm x 6.667 mm x 63.8 mm Si support Kapton Layer 0.1 mm Support layout Carbon Fiber 500 mm Rohacell 8.075 mm Carbon Fiber 500 mm 10° NOZZLE December 1st, 2010 8

N. Terentiev (CMU/Fermilab) Muon Accelerator Program Meeting, JLab, March 2, 2011

Physics

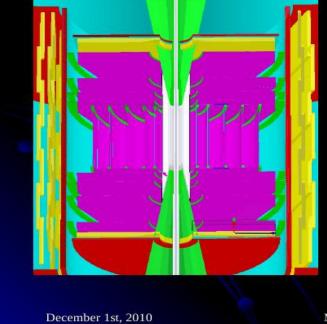

Carnegie Mellon

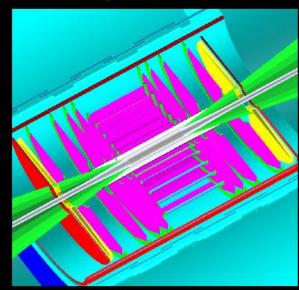
 Silicon Tracker (SiT) and Forward Tracker Detector (FTD) (from A. Mazzacane)

Silicon Tracker (SiT) and Forward Tracker Detector (FTD)

- 50 μm x 50 μm Si pixel (or Si strips or double Si strips available)
- Barrel : 5 layers subdivided in staggered ladders
- Endcap : (4+2) + (4+2) disks Si pixel
- FTD: 3 + 3 disks Si pixel
 - Mostly SiD layout + FTD
 - Not parametrized geometry yet

December 1st, 2010

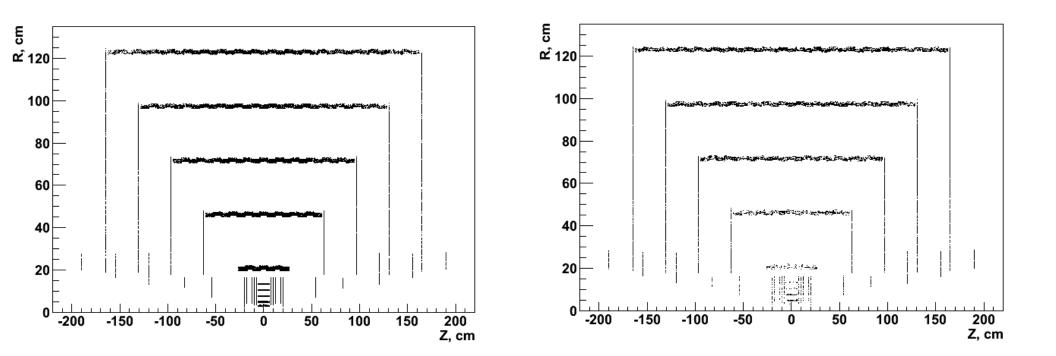

Muon Collider Physics and Detector Working Group



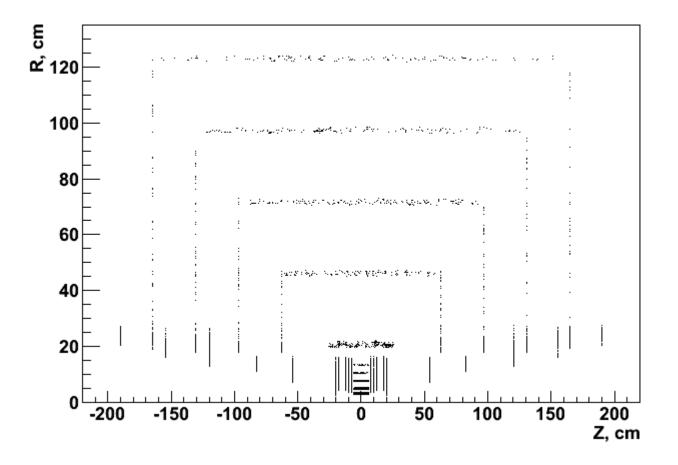
Vertex Detector (VXD), Nozzle and Beam Pipe (from A. Mazacanne)

Vertex Detector (VXD) Nozzle and Beam Pipe

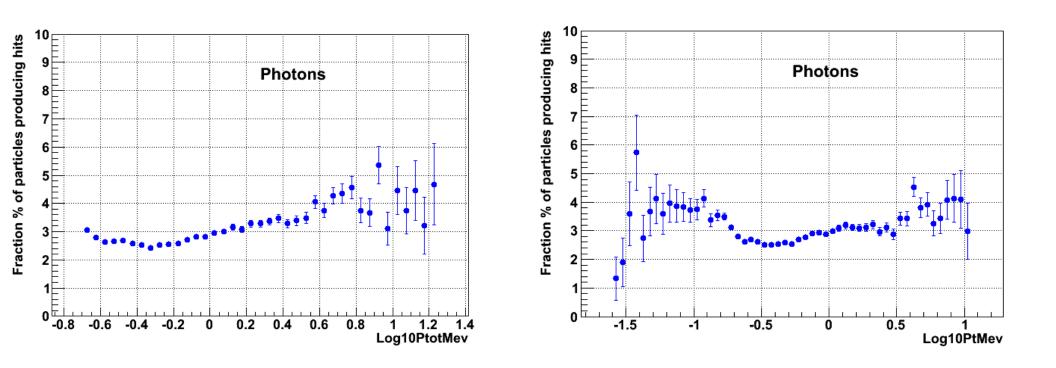
- 20 μm x 20 μm Si pixel
- Barrel : 5 layers subdivided in 12- 30 ladders
- Endcap: 4 + 4 disks subdivided in 12 ladders


- Mostly SiD layout
- Different dimensions (different B field = 3.5 T)
- Full parametrized geometry

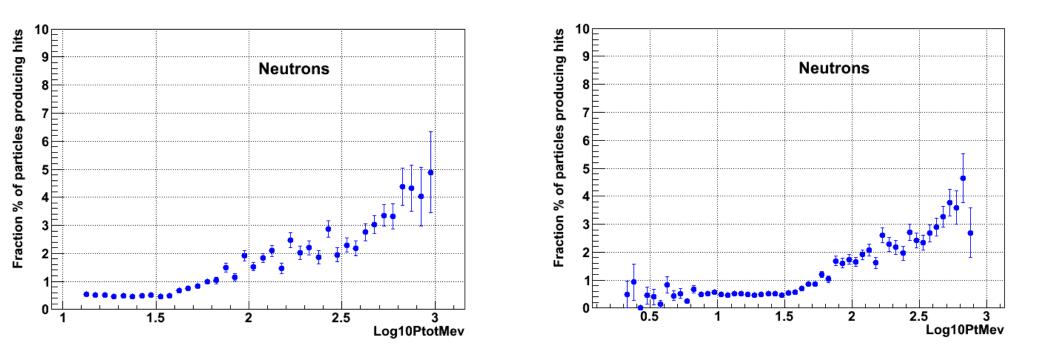
Muon Collider Physics and Detector Working Group


Hits from photons and neutrons in sensitive volumes of CLICCT

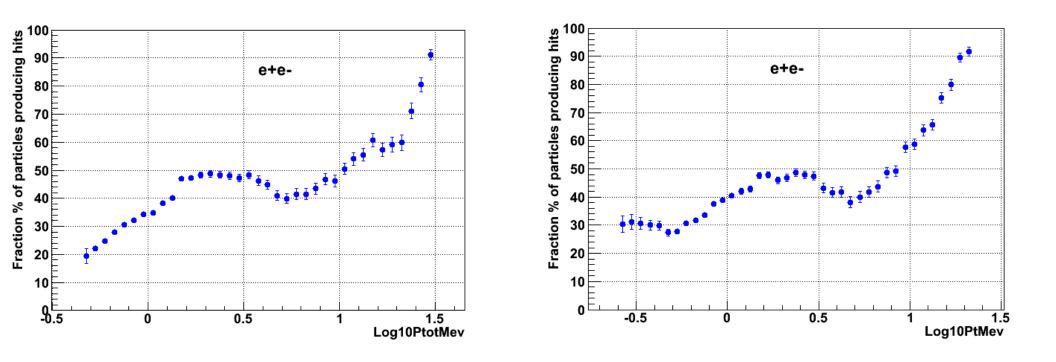
Z and R coordinates of the hits from the secondary particles produced by photons Z and R coordinates of the hits from the secondary particles produced by neutrons



- Hits from e⁺e⁻ in sensitive volumes of CLICCT
 - Most of the hits in first layers of VXD (magnetic field 3.5T)



 Fraction of photons producing hits vs. P_{tot} and P_t (through secondary particles)



 Fraction of neutrons producing hits vs. P_{tot} and P_t (through secondary particles)

Fraction of e⁺e⁻ producing hits vs. P_{tot} and P_t

 Fractions of photons, neutrons and e⁺e⁻ making hits in sensitive volumes of CLICCT

	photons	neutrons	e+e-
Absolute MARS yields, # of particles (weight included, both beams)	1.77e+08	0.40e+08	1.03e+06
Fraction of particles producing hits in CLICCT sensitive volumes	~2.8%	~0.6%	~43%
# of MARS particles "seen" by CLICCT	5.0e+06	0.24e+06	0.44e+06

 Photons Ekin ~ 0.2 – 100 MeV Neutrons Ekin ~ 0.1 – 1000 MeV e⁺e⁻ Ekin ~ 0.2 – 100 MeV

Merging MARS background with muon physics Physics events

- Before to start ALL statistics background simulation in ILCroot and merge it with physics events
 - Do it step by step, start from small background samples, 1e+05 and 1e+06 particles
 - Merge them with physics events with 10 μ per event
 - Look at muon track reconstruction efficiency in CLICCT vs. background level
- Made successful attempt to merge 1e+05 sample of MARS background (all IDs) with one physics event (10 µ per event) in ILCroot
- The reconstruction code was successfully run for one 10 μ event merged with MARS 1e+05 background

Conclusion

- MARS15 model for realistic IR magnets design and optimized shielding
 - Encouraging results on 0.75-TeV beams MC detector backgrounds with 10^o shielding nozzle
 - Breakthrough in reduction of statistical weight spread
 - New high-statistics files are available
- ILCroot simulation, reconstruction and analysis framework
 available at Fermilab
 - It allows merging of signal and background event
 - Reconstruction of tracks (full Parallel Kalman Filter) and showers in calorimeter
 - Work on ILCroot specific for Muon Collider is in progress
 - New interface to MARS is working smoothly for Muon Collider studies

Conclusion

- The latest MARS background samples for photons, neutrons (with statistics ~1M) and e⁺⁻ (~0.05M) were simulated in ILCroot for CLICCT (tracker and vertex detectors)
 - The fractions of background particles producing hits in sensitive volume of CLICCT were found to be:

photons ~ 2.8%, neutrons ~ 0.6% e⁺⁻ ~ 43%

- Successful attempt was made to merge MARS background and physics event and reconstruct the muon tracks in CLICCT
- Plan:
 - Work on analysis of merged data to get muon track reconstruction efficiency vs. MARS background level

Backup slides

ILCroot: essential add-ons to Aliroot


- Interface to external files from Event Generators in various format (STDHEP, text, <u>MARS</u>, etc.)
- 2. Standalone VTX track fitter
- Pattern recognition from VTX (for Si central trackers)
- Track fitters for different trackers technologies (Si Pixels, Si Strips, Drift Chambers, Straw Tubes, TPC's) and a ombination of them
- 5. Full simulation of *Dual Readout calorimeters*
- 6. Parametric beam background (# integrated bunch crossing chosen at run time)

Very important for detector and Physics studies of New Projects

Growing number of experiments have adopted it: Alice (LHC), Opera (LNGS), (Meg), CMB (GSI), Panda (GSI), 4th Concept, (SiLC ?) and LHeC

ILCroot architecture

N. Terentiev (CMU/Fermilab) Muon Accelerator Program Meeting, JLab, March 2, 2011

14 Detectors in ILCroot + 12 from Alice

Detector	Layouts	Digit./Cluster.	
VXD (SIDMay06)	1 (parametric)	Full	
FTD (SiLC)	1	Full	
DCH (CluCou)	2	Gauss Smear.	NEW
TPC (Hybrid readout)	1	Gauss. Smear.	7 /
Si-Tracker (SID01-Polyhedra)	1+1	Full	
µCollider/CLIC Tracker		Full	
Hadron Calorimeter	2	Full	
ADRIANO Calorimeter	1	Full	>
EM Calorimeter	2	Full	
Muon Spectrometer (straw tubes)	1	Gauss. Smear.	

N. Terentiev (CMU/Fermilab) Muon Accelerator Program Meeting, JLab, March 2, 2011