

Acceleration Studies for MAP

J. Scott Berg Physics Department Brookhaven National Laboratory

Muon Accelerator Program Winter Meeting March 2, 2011

IDS-NF acceleration
 FFAG design updates
 The EMMA experiment
 Acceleration for a muon collider
 Acceleration workshop

IDS-NF Acceleration Scenario

- Linac to 0.9 GeV
 Two RLAs, to 3.6 and 12.6 GeV
 FFAG to 25 GeV
 - Each stage most efficient for its energy range

- Single beamline accepting a wide energy range
 - Avoid switchyard, get large number of passes: more efficient, lest costly
 - Need injection and extraction systems
- Consists of (ideally) identical FDF triplets
 RF cavities in most long drifts
 - More efficient, lest costly if drifts are shorter

IDS-NF FFAG Design Updates

Have designs for injection/extraction systems
 6 kickers (2 injection, 4 extraction), 4 septa
 Septum field below 2 T to control stray fields
 Required increasing drift length to 5 m
 Impacted cost and efficiency of FFAG

Cells	64	Circumference	667 m
Long drift	5.0 m	Short drift	0.5 m
RF cavities	48	RF voltage	1214 MV
Turns	11.6	Decay	6.7%
D max field	6.1 T	F max field	4.3 T

IDS-NF FFAG Design Updates

 Design of kickers and power supplies
 Traveling wave kicker with 4 sub-kickers
 3 PFNs per sub-kicker

- to produce required current
- 3 sets for 3 bunches from proton driver
- G kickers: yes, multply these numbers...

IDS-NF FFAG Design Updates

- First pass at main magnet designs
 First look at engineering layout: need more space between magnets in triplet
 Will update design with 75 cm between magnets
 Tasks getting to RDR
 - Beam dynamics studies to tweak parameters, define longitudinal matching
 - Transfer lines to/from FFGA
 - Decide on chromaticity correction

The EMMA Experiment Introduction

 Purpose: beam dynamics studies on a linear non-scaling FFAG

- Accelerate electrons from 10 to 20 MeV
- 1.3 GHz RF, accelerate in 10 turns
- 42 cells, 16.6 m circumference

The EMMA Experiment Introduction

 Have stored beam for 100s of turns at several energies

- Deasured time of flight, closed orbit
- Tune measurements are more challenging (decoherence from chromaticity)

- Have accelerated over small energy ranges
 Biggest problem: large closed orbit distortion
 - Caused by magnetic lattice asymmetry
 - Does not appear to be magnet misalignments
 - But possibly correctable with magnet misalignments, vertical correctors
 - Asymmetry likely preventing acceleration over larger range

Muon Collider Initial Design Configuration

- After v factory acceleration, fast ramping synchrotrons to 750 GeV
 - Large number of passes through RF
 - Efficient use of RF power and hardware
 - Can create high synchrotron tune: stabilize collective effects
 - Higher energy, longer ring: time to ramp magnets and top off RF

Two stages

- \square Ramping synchrotron to \approx 400 GeV
- Hybrid ramping synchrotron to 750 GeV

Muon Collider Collective Effects

- \odot Beam loading w/ high current $\square \approx 8.3\%$ energy extraction per pass for 1.3 GHz
- Large additional contribution from HOMs, etc.
- Small vacuum chamber in ramped magnets
 Mitigation
 - □ Lower frequency RF
 - Strong synchrotron oscillations
 - Distribute RF around ring: arc/ring act like mini-ring
 - \diamond Mode coupling viewpoint: higher v_s separates modes
 - Chromaticity
 - □ Few turns, growth tolerable?

BROOKHAVEN NATIONAL LABORATORY Hybrid Ramping Synchrotron

Keep average field high: mix
 Fixed-field superconducting dipoles
 Ramped (-1.8 T to +1.8 T) warm dipoles

Closed orbit changes during acceleration

Muon Collider Acceleration R&D Tasks

- Study designs for fast ramping synchrotrons, in particular hybrid lattice
 - Magnet ramping functions that best maintain tunes, time of flight, minimize orbit excursion
 - Determine best way to insert RF
 - Space allocated (not necessarily filled) in each cell
 - Special RF sections
 - Suppress dispersion?
 - Suppress reference orbit shift with energy?
- Collective effects, constraints on lattice design
- Limits/costs of ramping magnets, power supplies

Muon Collider Acceleration Decays and Power

- Palmer analyzed collider acceleration for decay losses, power consumption
 Baseline has about 40% decay loss
 Only includes SC acceleration portion
 Spec was 30%, including warm acceleration from final cooling
- Largest contribution to decay: low initial energy in first RCS, which has relatively low average gradient

Decays and Power Baseline Scenario

	E_{f}	п	$f_{\sf RF}$	V_{avg}	Decay	$P_{\sf pk}$	P_{wall}
	GeV		MHz	MV/m	%	ΜŴ	MW
Linac	1.2	1.0	201	5.7	2.7	33	2.5
RLA	4.2	5.0	201	2.4	7.4	25	1.9
RLA	15.0	5.0	201	3.3	5.6	90	6.8
FFAG	30.0	9.0	201	2.7	4.1	70	5.2
RCS	400.0	28.0	805	2.0	19.0	401	5.9
RCS	750.0	44.0	805	1.2	8.1	241	5.5
					39.2		27.8

Decays and Power Low Decay Scenario

- Opdate acceleration scenario to reduce decays
 Stretch linac and RLAs to get to 100 GeV
 - Average gradient increased
 - Drop FFAG stage
 - Cost: much more RF
- Also increase average gradient in second RCS
- Decays down to 27% (but 16% decays in warm means still don't meet spec)
- Much more RF (and peak RF power), increased plug power

Decays and Power Low Decay Scenario

	E_{f}	п	$f_{\sf RF}$	V_{avg}	Decay	$P_{\sf pk}$	P_{wall}
	GeV		MHz	MV/m	%	ΜŴ	MW
Linac	1.5	1.0	201	7.9	2.4	46	3.4
RLA	12.5	4.4	201	4.0	7.6	105	7.8
RLA	100.0	6.5	402	5.6	5.4	469	11.7
RCS	400.0	23.0	805	2.1	10.2	396	4.7
RCS	750.0	27.0	805	2.1	4.8	393	7.2
					27.1		34.8

13–15 April, Oxford, MS Covering *only* two topics

- Lattice design of a hybrid synchrotron to 750 GeV
 Review of the IDS-NF linac and RLA designs
- Meeting is for people working on these two topics: others please read our output...

BROOKHAVEN MAP Acceleration Workshop

No talks, only discussion and planning
 Output will be two documents

Hybrid synchrotron: plan to get to a complete lattice design, including finite list of options to consider
 IDS-NF designs: specification of existing lattice, list of necessary additions and updates

IEEE Pulsed Power Conference

- MAP needs expertise in pulsed power systems
 Kickers
 - Induction linacs
 - Fast ramping magnets
 - RF systems
- Upcoming conference on the subject:

