Overview of HEMC Scheme

R. B. Palmer, (BNL)

JLab

2/28/2011 My birthday

- Progress on Cooling simulations
- New Acceleration sequence with higher transmission
- New System transmission estimate
- New Wall power requirement estimate

Target Collection (Kirk, Bing)

- Study II was for 1 MW Collider uses 4 MW
- Study II used 24 GeV Collider uses 8 MW
- Radiation from target \approx 8 \times higher
- Study II SC OD \approx 2.6 m New design OD \approx 4 m
- Study II 6 T Cu power = 12 MW New 6 T Cu power = 15 MW

Charge Separation (Fernow, Palmer)

• Use of Snake cooling would delay charge separation to lower emittances and not require higher momenta

- New corrected Final Cooling with 30 T 30 T now ok (Palmer)
- 6D cooling before merge now with real coils and field map (Fernow)
- 6D merge is more efficient than old 2D merges (Palmer)

Simulation with field map (Fernow)

- Current simulation uses rings (Pavel has shown Guggenheim similar)
- Simulation used tilted coils separate bend will give greater dispersion This will allow smaller apex angles and better performance

Compare Slopes

- Similar slopes
- 325 MHz HCC delays long cooling

Compare Losses

- 325 MHz HCC with 27 MV/m has least losses but would meet specifications set by Matrix Guggenheim
- Guggenheim using field map slightly worse than with Matrices but should be improved with greater dispersion

- Cooling after merge is more efficient with 6D merge
- Trombone will be much easier for 3(longitudinal) \times 2(x) \times 2(y) ~=~~12
- It can also be made shorter using wiggler with higher fields

Acceleration (Berg)

- Linac: 0.4-1.2 GeV 140 m
- RLA 1: 1.2-4.2 GeV Linacs 79 m arcs 173-259 m
- RLA 2: 4.2-15 GeV Linacs 288 arcs 362-548
- FFAG: 15-30 GeV 622 m circumference
- RCS1: 30-400 GeV • RCS2: 400-750 GeV $6 \text{ RCS} < \mathcal{E} >= 1.2 \text{ MV/m}$ Transmission 52.7% $5 \text{ RCS} < \mathcal{E} >= 2.0 \text{ MV/m}$ $4 \text{ FFAG} < \mathcal{E} >= 2.7 \text{ MV/m}$ 1 km $3 \text{ RLA} < \mathcal{E} >= 3.3 \text{ MV/m}$ $\sim 2 \text{ RLA} < \mathcal{E} >= 2.4 \text{ MV/m}$ 1 Linac $\langle \mathcal{E} \rangle = 5.7 \text{ MV/m}$

Acceleration with improved transmission (Berg, Palmer)

- Linac 0.4-1.5 GeV 140 m
- RLA 1: 1.5-12.5 GeV Linacs 306 arcs 210-413
- RLA 2: 12.5-100 GeV Linacs 1250 arcs 698-1716
- No FFAG
- RCS1 100-400 GeV
- RCS2 More [^]

MC Ring Parameters (Y Alexahin)

C of m Energy	1.5	3	TeV
Luminosity	1	4	$10^{34} \mathrm{~cm}^2 \mathrm{sec}^{-1}$
Beam-beam Tune Shift	0.087	0.087	
Muons/bunch	2	2	10^{12}
Total muon Power	9	15	MW
Ring <bending field=""></bending>	6	8.4	Т
Ring circumference	2.6	4.5	km
eta^* at $IP=\sigma_z$	10	5	mm
rms momentum spread	0.1	0.1	%
RF frequency	805	805	MHz
RF Voltage	20	230	MV
Repetition Rate	15	12	Hz
Proton Driver power	\approx 4	\approx 4	MW
Muon Trans Emittance	25	25	pi mm mrad
Muon Long Emittance	72,000	72,000	pi mm mrad

• RF \mathcal{E} = 20 MV/m super conducting 6×18.75 cm=1.12m cells for 1.5 TeV 61 cells ×18.75=11.4 m for 3 TeV

Heat load from Decay in Ring Kirk, Bing

9 MW beam power Power to electrons \approx 3 MW If at 77 deg and 20% of Carno then wall power = $3 \times 3.2 \times 5 = 48$ MW

Better to take most of heating at room temperature

e.g. 93% at room temp.

and 6 % at 77 deg. giving wall power of 3 MW (Placeholder only) and 0.6 % at 4 deg. giving wall power of 7 MW (Placeholder only)

New estimates of Transmission

From new acceleration design (not simulated), and cooling simulations

	transmission	cumulative	mu/p	mu/pulse
After rotation			0.334	
$Momenta = 226\pm100MeV/c$	0.654	1.0	0.219	
Best 21 bunches	0.7	0.7	0.153	$2 \times 27.7 \ 10^{12}$
Charge separation	0.85	0.59	0.129	$23.5 \times 2 \ 10^{12}$
6D Cooling before merge	0.468	0.28	0.061	11.0 $\times 2 \ 10^{12}$
Merge	0.88	0.25	0.055	9.7 $\times 2 \ 10^{12}$
6D Cooling after merge	0.48	0.12	0.026	4.7 ×2 10^{12}
50 T Cooling	0.7	0.08	0.018	$3.3 \times 2 \ 10^{12}$
RTRF low energy acceleration	0.84	0.067	0.015	$2.7 \times 2 10^{12}$
SCRF Acceleration	0.73	0.049	0.011	$2.0 \times 2 10^{12}$

• Initial production from 8 GeV and MARS 15:

For 2 10^{12} muons 1.87 10^{14} protons/bunch

• Power at 12 Hz: $15 \times 1.8710^{14} \times 810^9 \times 1.610^{-19} = 3.6 \text{ MW}$

< 4 MW \rightarrow still some allowance for increased losses/ lower production.

rf Cavities

	f	n	P(peak)
	MHz		MW
Induction		124 imes 1 m	-
NCRF	30	2	3
NCRF	67	5	6
NCRF	110	2	14
NCRF	150	3	17
NCRF	201	344	1160
NCRF	402	426	608
NCRF	805	2252	1283
SCRF	201	206	150
SCRF	402	1900	420
SCRF	805	3500	790

One could estimate the cost of these !

Calculation of Wall Power

		Wall p	bower \rightarrow						
	Len	P_{peak}	Static	Dynamic					Tot
			4 ⁰	rf	PS	4 ⁰	20 ⁰	70 ⁰	
	m	MW	MW	MW	MW	MW	MW	MW	MW
p Driver (SC linac)									(20)
Target and taper	16				15.0	1.6			16.6
Decay and phase rot	95	220	0.1	0.8		4.5			5.4
Charge separation	14								
6D cooling before merge	222	1420	0.6	7.2		6.8	6.1		20.7
Merge	115	10	0.2	1.4					1.6
6D cooling after merge	428	1350	0.7	2.8			2.6		6.1
Final 4D cooling	78		0.1	1.5			0.1		1.7
NC RF acceleration	104	35	0.1	4.1					4.2
SC RF linac	140	50	0.1	3.4					3.5
SC RF RLAs	10400	570	9.1	19.5					28.6
SC RF RCSs	12566	790	11.3	11.8					23.1
Collider ring	2600		2.3		(3.0)	3		(7)	5.3
Totals	26777	4445	24.6	52.5	18.0	15.9	8.8	7	146.8

Refrigerator costs could also be estimated

Variants: 1) Using MICE spectrometer data to predict cryogenic losses

Of the total wall power estimates for cryogenic cooling, that coming from heat leaking into the 4 degree systems, are given in column 2 of the following table.

If we assume cryostat heat losses taken from the experience of the MICE spectrometer magnet (2 w/m), instead of an earlier estimate (1.2 W/m), then the new total wall power numbers become:

P_{wall} old cryo loss	new cryo loss	Diff	P_{wall} total old	P_{wall} total new		increase	
24.6	32.8	8.2	147	155	MW	5.7	%

2) Magnetic insulation instead of pillbox cavities in fields The wall power used to power NCRF in the phase rotation and cooling sections where magnetic field is present, are given in column 2 of the following table. If Magnetic insulation is used, this power will be higher by a factor of ≈2. Columns 3 and 4 give the total wall powers including this factor.

old P_{wall} for NCRF	new P_{wall} for NCRF	diff.	P_{wall} total old	P_{wall} total new		increase	
12.2	24.4	12.2	147	159	MW	8.5	%

3) 3 TeV instead of 1.5 TeV c-of-m

• requires a new RCS for 750-1500 GeV

	E1	E2	L	turns	Cav's	Freq	grad	<grad $>$	Decay	Pwall
	GeV	GeV	m			MHz	MV/m	MV/m	%	MW
RCS	750.00	1500.00	12566	29.0	5724	805	25.0	2.1	5.3	15.9

- Requires a larger collider ring
- Wall power changes:

	old P _{wall}	new P_{wall}	Diff.	total old	P_{wall} total new	increase
	MW	MW	MW	MW	MW	%
rf in new RCS	-	15.9	15.9	147	163	11.0
magnet power in RCS	-	3	3	163	166	1.9
Static cryo in RCS	-	11.3	11.3	166	177	6.9
rf in ring	0.01	0.15	0.14	177	177	0.1
static cry for ring	2.3	4.0	1.7	177	179	1.0
Lower rep rate	99	$12/15 \times 99$	-20	179	159	-11.4

- Wall power for 3 TeV only 8.3 % higher than for 1.5 TeV

- The 3 TeV power of 159 MW is $\approx 1/3$ of CLIC, & 2/3 of ILC

– and has (within 1 % E) 2 × luminosity of CLIC (4 vs. 2 10^{34})

- This has larger uncertainties since the 3 TeV ring has not been designed

To be done on Current Ideas

- Evaluate space charge and other coherent effects at all locations in scheme
- Final Cooling
 - include windows
 - $-\operatorname{more}$ and better optimizations
 - $-\operatorname{match}$ and re-acceleration of an initial, mid, and final stage
 - full simulation
- RFOFO (Guggenheim/Ziggurat) 6D Cooling
 - simulate early 6D using output from new Phase Rotation
 - re-design 6D merge for 12 bunches
 - $-\operatorname{compare}\,6D$ with Neuffer 4D merging using matrix 6D cooling
 - $-\,tackle$ momentum miss-match before final cooling (200 MeV \rightarrow 135 MeV
 - $-\,tackle$ initial momentum miss-match from charge separation to 6D (400 $\,MeV \rightarrow 200 \;MeV$
 - $-\operatorname{design}$ RFOFO lattice with separate bending for greater dispersion
 - $-\operatorname{do}$ full simulations of early 6D and 6D after merge

- HCC
 - $-\operatorname{design}$ initial 201 MHz HCC with specified coils and compatible rf
 - simulate the above using field maps (not helical fields)
 - design final 805 MHz HCC with specified coils and compatible rf
 - Simulate the above using field maps (not helical fields)
 - simulate needed sequences for before and after merge
- Snake Cooling
 - $-\operatorname{simulate}$ snake for initial 6D with charge separation delayed
 - $-\operatorname{compare}$ with RFOFO
- Acceleration
 - design and simulate early Normal Conducting for rf after final cooling
 - $-\operatorname{design}$ RLAs with better transmission
 - $-\operatorname{design}$ hybrid SC and pulsed 2nd RCS
 - $-\operatorname{design}$ less challenging 1st RCS

To be done in Exploration of new options

- Explore Non-Flip RFOFO at end of 6D
 - $-\operatorname{aim}$ to reduce current densities and fields in coils
- Explore REMX using wedges in 30-40 T solenoids
 - $-\operatorname{this}$ should allow cooling to lower emittances
 - but 2 $d\epsilon_{\parallel}/\epsilon_{\perp}$ probably above 1.0

To be done on system requirements

- Tabulate super-conducting magnets
- Tabulate pulsed magnets
- Tabulate power supplies

Conclusion

- Much simulation progress this year
 - new capture magnet design
 - $\ new$ shorter phase rotation
 - $\ {\rm charge} \ {\rm separation}$
 - $-\,6D$ Ziggurat with field maps
 - $-\,201/402/805\,\,\text{MHz}\,\,\text{HCC}$
 - -6D merge
 - $-\operatorname{improved}$ final cooling with 30 T
 - $-\operatorname{sequence}$ of acceleration with better transmission
 - $-\operatorname{start}$ of design for open mid-plane dipole
- \bullet Either HCC or Guggenheim/Ziggurat probably ok
 - question for Ziggurat still rf breakdown in fields although magnetic insulation promising
 - $-\operatorname{question}$ for HCC still incorporation of rf in helix magnets
- \bullet New transmission estimate still ok
- List of all rf for reviewers
- \bullet Estimate of wall power 2/3 of ILC $\,$ 1/3 of CLIC