Nucleon structure in terms of OPE

with non-perturbative Wilson coefficients

QCDSF Collaboration

W. Bietenholz, N. Cundy, M. Göckeler, R. Horsley, H. Perlt,

D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, J.M. Zanotti

<u>Abstract</u> :

• Lattice calculations may contribute to the understanding of **Deep Inelastic Scattering** by evaluating **moments of the Nucleon Structure Functions.**

• To this end we study the product of electromagnetic currents between quark states. The **Operator Product Expansion (OPE)** decomposes it into matrix elements of **local** operators (depending on the quark momenta) and Wilson coefficients (as functions of the larger photon momenta).

• For consistency we evaluate a set of Wilson coefficients nonperturbatively, based on propagators for numerous momentum sources, on a $24^3 \times 48$ lattice. Overlap quarks suppress unwanted operator mixing.

• Results for the leading Wilson coefficients are extracted by means of Singular Value Decomposition.

Motivation

Deep Inelastic Scattering data are interpreted in terms of Nucleon Structure Functions \mathcal{M} .

Continuum: renormalon ambiguities $! \Rightarrow$ Lattice formulation :

$$\mathcal{M}(q^2) = c^{(2)}(aq)A_2(a) + \frac{c^{(4)}(aq)}{q^2}A_4(a) + \dots \{\text{higher twists}\}$$

- q: momentum transfer
- $c^{(n)}$: Wilson coefficients
- A_n : matrix elements
- $c^{(n)}$ and A_n are "reduced" (Lorentz structure is factored out).

Traditionally $c^{(n)}$ were evaluated by cont. pert. theory.

But: $c^{(2)}$, $A_4 \propto \frac{1}{a^2}$ Cancellation requires consistent non-pert. evaluation of both [1]. A_2 : determination by established procedure based on ratio of 3-point / 2-point functions.

Focus on numerical results for $c^{(2)}$

Quenched simulation with Lüscher-Weisz gauge action, $V=24^3 \times 48, \ a\simeq 0.075 \ {\rm fm}$, Landau gauge

Two flavours of overlap valence quarks $(\rho = 1.4)$ \rightarrow suppresses undesired operator mixing and O(a) artifacts. Quark mass $0.028 \simeq 73$ MeV.

For previous results with Wilson fermions, see Refs. [2].

OPE on the Lattice

Product of electromagnetic currents $J_{\mu} = \bar{\psi} \gamma_{\mu} \psi$

$$\begin{split} \mathbf{W}_{\mu\nu} &= \langle \psi(\mathbf{p}) | \mathbf{J}_{\mu}(\mathbf{q}) \mathbf{J}_{\nu}^{\dagger}(\mathbf{q}) | \psi(\mathbf{p}) \rangle \\ &= \sum_{\mathbf{m},\mathbf{n}} \mathbf{C}_{\mu\nu,\mu_{1}...\mu_{n}}^{(\mathbf{m})}(\mathbf{q}\mathbf{a}) \ \langle \psi(\mathbf{p}) | \mathcal{O}_{\mu_{1}...\mu_{n}}^{(\mathbf{m})} | \psi(\mathbf{p}) \rangle \end{split}$$

 $\mathcal{O}^{(m)}$: <u>local</u> operators, characterise hadron structure

m: index for operators with same symmetry

 $|\psi(p)
angle$: quark state with (low) momentum p

 $C^{(m)}$: Wilson coefficients, only depend on transfer momentum q

OPE truncation at low operator dimension requires scale separation

 $\mathbf{p^2} \ll \mathbf{q^2} \ll (\pi/\mathbf{a})^2$

The large lattice allows for a set of small p^2 , at fixed q.

We consider quark bilinears with up to 3 derivatives:

 $\bar{\psi}\Gamma\psi$, $\bar{\psi}\Gamma D_{\mu_1}\psi$, $\bar{\psi}\Gamma D_{\mu_1}D_{\mu_2}\psi$, $\bar{\psi}\Gamma D_{\mu_1}D_{\mu_2}D_{\mu_3}\psi$

 Γ : full Clifford structure $\Rightarrow 16 \cdot \sum_{d=0}^{3} 4^{d} = 1360$ operators. <u>However</u>: we choose transfer momentum $\mathbf{aq} = \frac{\pi}{4}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$ ($|q| \simeq 4.1$ GeV).

 \Rightarrow Symmetry reduces **number of indep. operators** to **67** [3].

We measure $W_{\mu\nu}$ off-shell for M = 16 momentum sources to determine N = 67 Wilson coefficients,

$$\begin{pmatrix} W^{(p_1)} \\ \vdots \\ \vdots \\ W^{(p_M)} \end{pmatrix} = \begin{pmatrix} \mathcal{O}_1^{(p_1)} & \cdots & \mathcal{O}_N^{(p_1)} \\ \vdots & \cdots & \vdots \\ \vdots & \cdots & \vdots \\ \mathcal{O}_1^{(p_M)} & \cdots & \mathcal{O}_N^{(p_M)} \end{pmatrix} \begin{pmatrix} C_1 \\ \vdots \\ \vdots \\ C_N \end{pmatrix}$$

(where the elements $W^{(p_i)}$ and $\mathcal{O}_k^{(p_i)}$ are 4×4 matrices).

Since 16M > N the system is over-determined \rightarrow we apply **Singular Value Decomposition** [4]:

Select $n \leq N$ conditions with "maximal impact" on the solution C_1, \ldots, C_N . Rapid convergence for increasing n approves a reliable result.

With 12 Singular Values (analogue to eigenvalues), good convergence, e.g. for operator $\bar{\psi}\vec{\gamma}\vec{D}\psi$. Precision saturates around $n \approx 50$ constraints.

Coefficients C_1 (for $\overline{\psi} \mathbb{1} \psi$) and $C_{7...16}$ vanish at $m \to 0$ (chiral symmetry). Here consistently small values, unlike result with Wilson fermions [2]. Similar pattern as tree level, but reduced absolute values.

• Method for Wilson coefficients successful.

Now \mathcal{M} is obtained by Nachtmann integration [5] over $W_{\mu\nu}$, $e.g. 2^{nd}$ moment:

$$\mathcal{M}_{2}(q) = \frac{3q^{2}}{(4\pi)^{2}} \int d\Omega_{q} n_{\mu} \Big[W_{\mu\nu}(q) - \frac{1}{4} \delta_{\mu\nu} W_{\rho\rho} \Big] n_{\nu}$$

$$\rightarrow \int_{0}^{1} dx \Big[F_{2}(x,q^{2}) + \frac{1}{6} F_{L}(x,q^{2}) \Big] \qquad \text{(Bjorken limit)}$$

 $n^2 = 1$, different projection $\rightarrow \dots [F_2 - \frac{3}{2}F_L]$ \Rightarrow determination of longitudinal structure function $F_L = F_2 - 2xF_1$.

• With completed data, we will obtain a fully non-perturbative and consistent evaluation of the Nucleon Structure Functions.

References

[1] G. Martinelli and C.T. Sachrajda, Nucl. Phys. B 478 (1996) 660.

- [2] S. Capitani, M. Göckeler, R. Horsley, H. Oelrich, D. Petters, P.E.L. Rakow and G. Schierholz, *Nucl. Phys. (Proc. Suppl.)* 73 (1999) 288.
 D. Petters, Ph.D. Thesis, Berlin (2000). M. Göckeler, R. Horsley, H. Perlt, P.E.L. Rakow, G. Schierholz and A. Schiller (QCDSF Collaboration) *PoS(LAT2006)119*.
- [3] W. Bietenholz, N. Cundy, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, C.J. Roberts, G. Schierholz, A. Schiller and J.M. Zanotti, (QCDSF Collaboration), *PoS(LAT2007)159.*
- [4] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, "Numerical Recipes", Cambridge University Press (1989).
- [5] O. Nachtmann, *Nucl. Phys.* **B 62** (1973) 273.