Nucleon structure in terms of OPE

with non-perturbative Wilson coefficients

QCDSF Collaboration

W. Bietenholz, N. Cundy, M. Göckeler, R. Horsley, H. Perlt,
D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, J.M. Zanotti

Abstract

- Lattice calculations may contribute to the understanding of Deep Inelastic Scattering by evaluating moments of the Nucleon Structure Functions.
- To this end we study the product of electromagnetic currents between quark states. The Operator Product Expansion (OPE) decomposes it into matrix elements of local operators (depending on the quark momenta) and Wilson coefficients (as functions of the larger photon momenta).
- For consistency we evaluate a set of Wilson coefficients nonperturbatively, based on propagators for numerous momentum sources, on a $24^{3} \times 48$ lattice. Overlap quarks suppress unwanted operator mixing.
- Results for the leading Wilson coefficients are extracted by means of Singular Value Decomposition.

Motivation

Deep Inelastic Scattering data are interpreted in terms of Nucleon Structure Functions \mathcal{M}.

Continuum: renormalon ambiguities! \Rightarrow Lattice formulation :

$$
\mathcal{M}\left(q^{2}\right)=c^{(2)}(a q) A_{2}(a)+\frac{c^{(4)}(a q)}{q^{2}} A_{4}(a)+\ldots \quad\{\text { higher twists }\}
$$

q : momentum transfer
$c^{(n)}$: Wilson coefficients
A_{n} : matrix elements
$c^{(n)}$ and A_{n} are "reduced" (Lorentz structure is factored out).
Traditionally $c^{(n)}$ were evaluated by cont. pert. theory.
But: $\quad c^{(2)}, A_{4} \propto \frac{1}{a^{2}}$
Cancellation requires consistent non-pert. evaluation of both [1].
A_{2} : determination by established procedure based on ratio of 3-point / 2-point functions.

Focus on numerical results for $c^{(2)}$
Quenched simulation with Lüscher-Weisz gauge action, $V=24^{3} \times 48, a \simeq 0.075 \mathrm{fm}$, Landau gauge

Two flavours of overlap valence quarks ($\rho=1.4$)
\rightarrow suppresses undesired operator mixing and $O(a)$ artifacts.
Quark mass $0.028 \simeq 73 \mathrm{MeV}$.
For previous results with Wilson fermions, see Refs. [2].

OPE on the Lattice

Product of electromagnetic currents $J_{\mu}=\bar{\psi} \gamma_{\mu} \psi$

$$
\begin{aligned}
\mathbf{W}_{\mu \nu} & =\langle\psi(\mathbf{p})| \mathbf{J}_{\mu}(\mathbf{q}) \mathbf{J}_{\nu}^{\dagger}(\mathbf{q})|\psi(\mathbf{p})\rangle \\
& =\sum_{\mathbf{m}, \mathbf{n}} \mathbf{C}_{\mu \nu, \mu_{1} \ldots \mu_{\mathbf{n}}}^{(\mathbf{m})}(\mathbf{q} \mathbf{a})\langle\psi(\mathbf{p})| \mathcal{O}_{\mu_{1} \ldots \mu_{\mathbf{n}}}^{(\mathbf{m})}|\psi(\mathbf{p})\rangle
\end{aligned}
$$

$\mathcal{O}^{(m)}$: $\underline{\text { local }}$ operators, characterise hadron structure
m : index for operators with same symmetry
$|\psi(p)\rangle$: quark state with (low) momentum p
$C^{(m)}$: Wilson coefficients, only depend on transfer momentum q

OPE truncation at low operator dimension requires scale separation

$$
\underline{\mathbf{p}^{2} \ll \mathbf{q}^{2}} \ll(\pi / \mathbf{a})^{2}
$$

The large lattice allows for a set of small p^{2}, at fixed q.

We consider quark bilinears with up to 3 derivatives:

$$
\bar{\psi} \Gamma \psi, \quad \bar{\psi} \Gamma D_{\mu_{1}} \psi, \quad \bar{\psi} \Gamma D_{\mu_{1}} D_{\mu_{2}} \psi, \quad \bar{\psi} \Gamma D_{\mu_{1}} D_{\mu_{2}} D_{\mu_{3}} \psi
$$

$\Gamma:$ full Clifford structure $\Rightarrow 16 \cdot \sum_{d=0}^{3} 4^{d}=1360$ operators. However : we choose transfer momentum $\mathrm{aq}=\frac{\pi}{4}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \quad(|q| \simeq 4.1 \mathrm{GeV})$.
\Rightarrow Symmetry reduces number of indep. operators to 67 [3].

We measure $W_{\mu \nu}$ off-shell for $M=16 \underline{\text { momentum sources }}$
to determine $N=67$ Wilson coefficients,

$$
\left(\begin{array}{c}
W^{\left(p_{1}\right)} \\
\cdot \\
\cdot \\
\cdot \\
W^{\left(p_{M}\right)}
\end{array}\right)=\left(\begin{array}{ccccc}
\mathcal{O}_{1}^{\left(p_{1}\right)} & \cdot & \cdot & \cdot & \mathcal{O}_{N}^{\left(p_{1}\right)} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\mathcal{O}_{1}^{\left(p_{M}\right)} & \cdot & \cdot & \cdot & \mathcal{O}_{N}^{\left(p_{M}\right)}
\end{array}\right)\left(\begin{array}{c}
C_{1} \\
\cdot \\
\cdot \\
C_{N}
\end{array}\right)
$$

(where the elements $W^{\left(p_{i}\right)}$ and $\mathcal{O}_{k}^{\left(p_{i}\right)}$ are 4×4 matrices).
Since $16 M>N$ the system is over-determined \rightarrow we apply Singular Value Decomposition [4]:

Select $n \leq N$ conditions with "maximal impact" on the solution C_{1}, \ldots, C_{N}. Rapid convergence for increasing n approves a reliable result.

With 12 Singular Values (analogue to eigenvalues), good convergence, e.g. for operator $\vec{\psi} \vec{\gamma} \vec{D} \psi$. Precision saturates around $n \approx 50$ constraints.

Wilson coefficients obtained from W_{33} and W_{44} :

Coefficients C_{1} (for $\left.\bar{\psi} \mathbb{1} \psi\right)$ and $C_{7 \ldots 16}$ vanish at $m \rightarrow 0$ (chiral symmetry). Here consistently small values, unlike result with Wilson fermions [2]. Similar pattern as tree level, but reduced absolute values.

- Method for Wilson coefficients successful.

Now \mathcal{M} is obtained by Nachtmann integration [5] over $W_{\mu \nu}$, e.g. $2^{\text {nd }}$ moment:

$$
\begin{aligned}
\mathcal{M}_{2}(q) & =\frac{3 q^{2}}{(4 \pi)^{2}} \int d \Omega_{q} n_{\mu}\left[W_{\mu \nu}(q)-\frac{1}{4} \delta_{\mu \nu} W_{\rho \rho}\right] n_{\nu} \\
& \rightarrow \int_{0}^{1} d x\left[F_{2}\left(x, q^{2}\right)+\frac{1}{6} F_{L}\left(x, q^{2}\right)\right] \quad \text { (Bjorken limit) }
\end{aligned}
$$

$n^{2}=1$, different projection $\rightarrow \ldots\left[F_{2}-\frac{3}{2} F_{L}\right]$
\Rightarrow determination of longitudinal structure function $F_{L}=F_{2}-2 x F_{1}$.

- With completed data, we will obtain a fully non-perturbative and consistent evaluation of the Nucleon Structure Functions.

References

[1] G. Martinelli and C.T. Sachrajda, Nucl. Phys. B 478 (1996) 660.
[2] S. Capitani, M. Göckeler, R. Horsley, H. Oelrich, D. Petters, P.E.L. Rakow and G. Schierholz, Nucl. Phys. (Proc. Suppl.) 73 (1999) 288. D. Petters, Ph.D. Thesis, Berlin (2000). M. Göckeler, R. Horsley, H. Perlt, P.E.L. Rakow, G. Schierholz and A. Schiller (QCDSF Collaboration) PoS(LAT2006)119.
[3] W. Bietenholz, N. Cundy, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, C.J. Roberts, G. Schierholz, A. Schiller and J.M. Zanotti, (QCDSF Collaboration), PoS(LAT2007)159.
[4] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, "Numerical Recipes", Cambridge University Press (1989).
[5] O. Nachtmann, Nucl. Phys. B 62 (1973) 273.

