
Topological Summation of

Observables Measured with

Dynamical Overlap Fermions

W. Bietenholza and I. Hipb

a NIC/DESY Zeuthen, Germany

b University of Zagreb, Croatia



Abstract :

• HMC histories for dynamical overlap fermions tend to stay in a fixed top.
sector for many trajectories.

• Therefore the suitable summation of observables, which have been
measured in separate sectors, is a major challenge.

• We explore several techniques for this issue, based on data for the chiral
condensate and “meson” masses in the 2-flavour Schwinger model with
dynamical overlap-hypercube fermions.
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Schwinger model (QED2) :

L(Ψ̄,Ψ, Aµ) = Ψ̄(x)
[

γµ(i∂µ + gAµ) +m
]

Ψ(x) +
1

2
Fµν(x)Fµν(x) .

Predictions for two degenerate flavours of fermion mass m� g :

Chiral condensate Σ(m) ≡ −〈Ψ̄ Ψ〉 = 0.388 . . . (mg2)1/3 [1] ,

“Mesons“ :

Pion mass Mπ = 2.008 . . . (m2g)1/3 [1] ,

eta mass Mη =

√

2g2

π
+M2

π [2] .
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Lattice formulation :

• Compact link variables Uµ,x ∈ U(1); plaquette gauge action.

• Overlap-hypercube Dirac operator

DovHF(m) =
(

1 − m

2

)

D
(0)
ovHF +m

D
(0)
ovHF = 1 + (DHF − 1)/

√

(D†
HF − 1)(DHF − 1)

DHF(U) : hypercube fermion operator

truncated perfect, approximately chiral [3].

Insert DHF into overlap formula [4]

→ D
(0)
ovHF solves the Ginsparg-Wilson relation [5], exact chirality [6].
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Comparison with standard overlap operator [4]: computational overhead
in the kernel (DWilson → DHF), but DovHF has numerous virtues [3, 7]:

• Faster convergence in the polynomial evaluation of DovHF.

• Much higher degree of locality

• Approximate rotation symmetry

• Improved scaling behaviour.

All these virtues are based on the similarity

DovHF ≈ DHF .

Moreover that property also facilitates HMC simulations:
simplified HMC force from a low polynomial in DHF [8].
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Simulations at β ≡ 1
g2 = 5 on L× L lattices

with two fermion flavours of mass m:

• L = 16 at m = 0.01 , 0.03 , 0.06 , 0.09 , 0.12 , 0.18 , 0.24

• m = 0.01 at L = 16 , 20 , 24 , 28 , 32

ν := top. charge, defined by the fermion index [5]

(only |ν| matters).
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Chiral condensate Σ = 1
V

∑

i
1

|λi |+m
:= |ν|

mV
+ ε|ν| (V = L2)

λi : Dirac eigenvalues, stereographically mapped onto imag. axis

Σ is well reproduced from RMT for 〈λ1〉ν=0/〈λ1〉|ν|=1 [9]. Here direct measurement:
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For ν 6= 0 zero-mode contribution dominates, ε|ν| small.

Zeros repel low lying non-zero modes ⇒ ε0 > ε1 > ε2 . . . (1)

Larger volume: more EV near 0 ⇒ εi(V1) > εi(V2) for V1 > V2 (2)
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1st Method : Gaussian Summation

Assume Gaussian distribution of the top. charges:

Σ =
∞
∑

ν=−∞

p(|ν|)Σ|ν| , p(|ν|) =
exp{−ν2/(2V χt)}

∑

ν exp{−ν2/(2V χt)}

Σ|ν| = −〈ψ̄ ψ〉|ν|
χt = 〈ν2〉/V : top. susceptibility

• If we have measured results for Σ0 . . .ΣQ,

we insert for |ν| > Q : |ν|
mV < Σ|ν| <

|ν|
mV + εQ based on ineq. (1)

• For L = 24 and 28, Σ|ν| data are missing for ν = 0 :

fix min./max. for ε|ν| by ineq. (2) from next smaller/larger V .
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For m = 0.01 . . . 0.06 we tune χt to match the prediction of p.2 [1].
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Results suggest χt ∝
√
m in fixed V near chiral limit.

Alternative results (with quenched re-weighted configurations) were given
by Dürr and Hoelbling [10]. Conjecture : χt ' [Nf/(Σ

(1)m) + 1/χt,q]
−1,

with Σ(1) = ΣNf=1(m = 0) ' 0.16 g and χt,q = χt(m→ ∞) [11].
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2nd Method : Summation Formula

1st method uses theoretical Σ as input to obtain χt

Goal: now compute Σ itself

Approximation formula in analogy to Ref. [12] (derivation in [13])

Σν := −〈ψ̄ψ〉ν ≈ Σ − A

V
+ ν2 B

V 2
(3)

A =
α

χt
, B =

α

χ2
t

(best for small |ν|) .

Σ, χt and α are unknown; Σ and χt are of interest.

• At fixed m and V , we can determine B, e.g. from Σ0 and Σ1 .

• At fixed m and two volumes V1 6= V2, we can determine A, e.g. from Σ0 .

This yields approximate results for Σ and χt = A/B .
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For a combined approach we obtain Σ at m = 0.01
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3rd method, from Ref. [14] :

Measure correlation of top. charge density ρt in a fixed sector, e.g. ν = 0,

lim
|x|→∞ 〈ρt(x)ρt(0)〉ν=0 ' − 1

V
χt . Results for χt in Ref. [13].
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Meson masses on L = 16 lattice in top. sectors |ν| = 0 and 1 :
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Measured from current correlators as in Ref. [2].

“Theory” refers to formulae on p.2, for V = ∞ and m� β−1/2 ' 0.45.

At least m = 0.01 is in the ε-regime.
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We apply Method 2, with eq. (3) for the pion mass — as originally intended
in Ref. [12] — at m = 0.01 and |ν| = 1,

Mπ,|ν|=1 ≈Mπ − A/V +B/V 2 .

We involve 3 volumes to fix Mπ, A and B,

L = 16 : Mπ,1 = 0.276(4)
L = 20 : Mπ,1 = 0.214(4)
L = 32 : Mπ,1 = 0.135(6)







⇒ Mπ = 0.078(8)

Compatible with the theoretical value of Ref. [1] : Mπ = 0.0713 . . . !

• Conclusion: Methods work, but exact results depend on
subtleties in assumptions. Need further investigations — Schwinger
model is ideal for testing before large-scale applications in QCD.

12



References

[1] A.V. Smilga, Phys. Rev. D55 (1997) 443.

[2] C. Gattringer, I. Hip and C.B. Lang, Phys. Lett. B 466 (1999) 287.

[3] W. Bietenholz, Eur. Phys. J. C 6 (1999) 537.

[4] H. Neuberger, Phys. Lett. B 417 (1998) 141.

[5] P. Hasenfratz, V. Laliena and F. Niedermayer, Phys. Lett. B 427 (1998) 125.
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