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Summary

• A strictly local fermion action D(A)

• with one exact chiral symmetry γ5D = −Dγ5

• describing two flavors; minimum required for chiral symmetry

• a linear combination of two ‘‘naive’’ fermion actions (Borici)

• Space-time symmetries

• translations plus 48 element subgroup of hypercubic rotations

• includes odd parity transformations

• renormalization can induce anisotropy at finite a
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Chiral symmetry crucial to our understanding of hadronic physics

• pions are waves on a background quark condensate 〈ψψ〉
• chiral extrapolations essential to practical lattice calculations

Anomaly removes classical U(1) chiral symmetry

• SU(Nf ) × SU(Nf ) × UB(1)

• non trivial symmetry requires Nf ≥ 2

Minimally doubled chiral fermion actions have just 2 species

• Karsten 1981

• Wilczek 1987

• recent revival: MC, Borici, Bedaque Buchoff Tiburzi Walker-Loud

Michael Creutz BNL 2



Motivations

• failure of rooting for staggered

• lack of chiral symmetry for Wilson

• computational demands of overlap, domain-wall approaches

Here I follow Borici’s construction

• linear combination of two equivalent naive fermion actions
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Start with naive fermions

• forward hop between sites γµU unit hopping parameter for convenience

• backward hop between sites −γµU
†

• µ is the direction of the hop

• U is the usual gauge field matrix

• 16 doublers

• Dirac operator D anticommutes with γ5

• an exact chiral symmetry

• part of an exact SU(4) × SU(4) chiral algebra Karsten and Smit
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In the free limit, solution in momentum space

D(p) = 2i
∑

µ

γµ sin(pµ)

• for small momenta reduces to Dirac equation

• 15 extra Dirac equations for components of momenta near 0 or π

p x

p
y

(π,π) (π,0)

(0,0) (0,π)

X

p z

p
t

(π,π) (π,0)

(0,0) (0,π)

16 ‘‘Fermi points’’
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Consider momenta maximally distant from the zeros: pµ = ±π/2

p x

p
y

(π,π) (π,0)

(0,0) (0,π)

(π/2,π/2)

(π/2,−π/2)

(−π/2,−π/2)

(−π/2,π/2)

Select one of these points, i.e. pµ = +π/2 for every µ

• D(pµ = π/2) = 2i
∑

µ γµ ≡ 4iΓ

• Γ ≡ 1
2 (γ1 + γ2 + γ3 + γ4)

• unitary, Hermitean, traceless 4 by 4 matrix
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Now consider a unitary transformation

• ψ′(x) = e−iπ(x1+x2+x3+x4)/2 Γ ψ(x)

• ψ
′
(x) = eiπ(x1+x2+x3+x4)/2 ψ(x) Γ

• phases move Fermi points from pµ ∈ {0, π} to pµ ∈ {±π/2}

• ψ′ uses new gamma matrices γ′µ = ΓγµΓ

• Γ = 1
2 (γ1 + γ2 + γ3 + γ4) = Γ′

• new free action: D(p) = 2i
∑

µ γ
′
µ sin(π/2 − pµ)

D and D physically equivalent
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Complimentarity: D(pµ = π/2) = D(pµ = 0) = 4iΓ

Combine the naive actions

D = D +D − 4iΓ

Free theory

• D(p) = 2i
∑

µ

(

γµ sin(pµ) + γ′µ sin(π/2 − pµ)
)

− 4iΓ

• at pµ ∼ 0 the 4iΓ term cancels D, leaving D(p) ∼ γµpµ

• at pµ ∼ π/2 the 4iΓ term cancels D, leaving D(π/2 − p) ∼ γ′µpµ

• Only these two zeros of D(p) remain!
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THEOREM: these are the only zeros of D(p) (appendix)

• at other zeros of D, D − 4iΓ is large

• at other zeros of D, D − 4iΓ is large
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Chiral symmetry remains exact

• γ5D = −Dγ5

• eiθγ5Deiθγ5 = D

But

• γ′5 = Γγ5Γ = −γ5

• two species rotate oppositely

• symmetry is flavor non-singlet
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Space time symmetries

• usual discrete translation symmetry

• Γ = 1
2

∑

µ γµ treats primary hypercube diagonal specially

• action symmetric under subgroup of the hypercubic group

• leaving this diagonal invariant

• includes Z3 rotations amongst any three positive directions

• V = exp((iπ/3)(σ12 + σ23 + σ31)/
√

3) [γµ, γν ]+ = 2iσµν

• cyclicly permutes x1, x2, x3 axes [V,Γ] = 0

• physical rotation by 2π/3

z

y

x

x

z

y

• V 3 = −1: we are dealing with fermions
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Repeating with other axes generates the 12 element tetrahedral group

• subgroup of the full hypercubic group

Odd-parity transformations double the symmetry group to 24 elements

• V = 1
2
√

2
(1 + iσ15)(1 + iσ21)(1 + iσ52) [V,Γ] = 0

• permutes x1, x2 axes

• γ5 → V †γ5V = −γ5
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Natural time axis along main diagonal e1 + e2 + e3 + e4

• T exchanges the Fermi points

• increases symmetry group to 48 elements

Charge conjugation: equivalent to particle hole symmetry

• D and H = γ5D have eigenvalues in opposite sign pairs

Michael Creutz BNL 13



Special treatment of main diagonal

• interactions can induce lattice distortions along this direction

• 1
a (cos(ap) − 1)ψΓψ = O(a)

• symmetry restored in continuum limit

• at finite lattice spacing can tune Bedaque Buchoff Tiburzi Walker-Loud

• coefficient of iψΓψ dimension 3 operator

• 6 link plaquettes orthogonal to this diagonal

• zeros topologically robust under such distortions

• Nielsen Ninomiya, MC
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Appendix A: Proof that there are only two zeros of D(p)

• Tr (γµ − γν)D(p) ∼ sin(pµ − π/4) − sin(pν − π/4)

• at a zero: cos(pµ − π/4) = ± cos(pν − π/4)

• all cosines equal in magnitude

• Tr ΓD(p) = 0 ⇒ ∑

µ cos(pµ − π/4) = 2
√

2 > 2

• all cosines positive

• at a zero: cos(pµ − π/4) = +1/
√

2

All components of pµ are equal and either 0 or π/2
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Appendix B: Actions from Karsten and Wilczek

• both equivalent up to a unitary transformation

• ψ → ix4ψ

D =
4

∑

µ=1

γµ sin(pµ) + γ4

3
∑

i=1

(1 − cos(pi))

• last term removes all zeros except ~p = 0, p4 = 0, π

Now x4 chosen as the special direction

• onsite term ∼ γ4 instead of ∼ Γ

• ~γ′ = ~γ, γ′4 = −γ4

• γ′5 = −γ5
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"Here’s what I’ve learned: that you can’t make fun of everybody, because some people don’t deserve it." -- Don Imus


