Local chiral fermions

Michael Creutz

Brookhaven National Laboratory

Summary

- A strictly local fermion action $\mathcal{D}(A)$
- with one exact chiral symmetry $\gamma_{5} \mathcal{D}=-\mathcal{D} \gamma_{5}$
- describing two flavors; minimum required for chiral symmetry
- a linear combination of two "naive" fermion actions (Borici)
- Space-time symmetries
- translations plus 48 element subgroup of hypercubic rotations
- includes odd parity transformations
- renormalization can induce anisotropy at finite a

Chiral symmetry crucial to our understanding of hadronic physics

- pions are waves on a background quark condensate $\langle\bar{\psi} \psi\rangle$
- chiral extrapolations essential to practical lattice calculations

Anomaly removes classical $U(1)$ chiral symmetry

- $\operatorname{SU}\left(N_{f}\right) \times S U\left(N_{f}\right) \times U_{B}(1)$
- non trivial symmetry requires $N_{f} \geq 2$

Minimally doubled chiral fermion actions have just 2 species

- Karsten 1981
- Wilczek 1987
- recent revival: MC, Borici, Bedaque Buchoff Tiburzi Walker-Loud

Motivations

- failure of rooting for staggered
- lack of chiral symmetry for Wilson
- computational demands of overlap, domain-wall approaches

Here I follow Borici's construction

- linear combination of two equivalent naive fermion actions

Start with naive fermions

- forward hop between sites
- backward hop between sites $-\gamma_{\mu} U^{\dagger}$
- μ is the direction of the hop
- U is the usual gauge field matrix
- 16 doublers
- Dirac operator D anticommutes with γ_{5}
- an exact chiral symmetry
- part of an exact $S U(4) \times S U(4)$ chiral algebra

In the free limit, solution in momentum space

$$
D(p)=2 i \sum_{\mu} \gamma_{\mu} \sin \left(p_{\mu}\right)
$$

- for small momenta reduces to Dirac equation
- 15 extra Dirac equations for components of momenta near 0 or π

16 "Fermi points"

Consider momenta maximally distant from the zeros: $p_{\mu}= \pm \pi / 2$

Select one of these points, i.e. $p_{\mu}=+\pi / 2$ for every μ

- $D\left(p_{\mu}=\pi / 2\right)=2 i \sum_{\mu} \gamma_{\mu} \equiv 4 i \Gamma$
- $\Gamma \equiv \frac{1}{2}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}\right)$
- unitary, Hermitean, traceless 4 by 4 matrix

Now consider a unitary transformation

- $\psi^{\prime}(x)=e^{-i \pi\left(x_{1}+x_{2}+x_{3}+x_{4}\right) / 2} \Gamma \psi(x)$
- $\bar{\psi}^{\prime}(x)=e^{i \pi\left(x_{1}+x_{2}+x_{3}+x_{4}\right) / 2} \bar{\psi}(x) \Gamma$
- phases move Fermi points from $p_{\mu} \in\{0, \pi\}$ to $p_{\mu} \in\{ \pm \pi / 2\}$
- ψ^{\prime} uses new gamma matrices $\gamma_{\mu}^{\prime}=\Gamma \gamma_{\mu} \Gamma$
- $\Gamma=\frac{1}{2}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}\right)=\Gamma^{\prime}$
- new free action: $\bar{D}(p)=2 i \sum_{\mu} \gamma_{\mu}^{\prime} \sin \left(\pi / 2-p_{\mu}\right)$
D and \bar{D} physically equivalent

Complimentarity: $\quad D\left(p_{\mu}=\pi / 2\right)=\bar{D}\left(p_{\mu}=0\right)=4 i \Gamma$

Combine the naive actions

$$
\mathcal{D}=D+\bar{D}-4 i \Gamma
$$

Free theory

- $\mathcal{D}(p)=2 i \sum_{\mu}\left(\gamma_{\mu} \sin \left(p_{\mu}\right)+\gamma_{\mu}^{\prime} \sin \left(\pi / 2-p_{\mu}\right)\right)-4 i \Gamma$
- at $p_{\mu} \sim 0$ the $4 i \Gamma$ term cancels \bar{D}, leaving $\mathcal{D}(p) \sim \gamma_{\mu} p_{\mu}$
- at $p_{\mu} \sim \pi / 2$ the $4 i \Gamma$ term cancels D, leaving $\mathcal{D}(\pi / 2-p) \sim \gamma_{\mu}^{\prime} p_{\mu}$
- Only these two zeros of $\mathcal{D}(p)$ remain!

THEOREM: these are the only zeros of $\mathcal{D}(p)$ (appendix)

- at other zeros of $D, \bar{D}-4 i \Gamma$ is large
- at other zeros of $\bar{D}, D-4 i \Gamma$ is large

Chiral symmetry remains exact

- $\gamma_{5} \mathcal{D}=-\mathcal{D} \gamma_{5}$
- $e^{i \theta \gamma_{5}} \mathcal{D} e^{i \theta \gamma_{5}}=\mathcal{D}$

But

- $\gamma_{5}^{\prime}=\Gamma \gamma_{5} \Gamma=-\gamma_{5}$
- two species rotate oppositely
- symmetry is flavor non-singlet

Space time symmetries

- usual discrete translation symmetry
- $\Gamma=\frac{1}{2} \sum_{\mu} \gamma_{\mu}$ treats primary hypercube diagonal specially
- action symmetric under subgroup of the hypercubic group
- leaving this diagonal invariant
- includes Z_{3} rotations amongst any three positive directions
- $V=\exp \left((i \pi / 3)\left(\sigma_{12}+\sigma_{23}+\sigma_{31}\right) / \sqrt{3}\right)$
- cyclicly permutes x_{1}, x_{2}, x_{3} axes

$$
\begin{array}{r}
{\left[\gamma_{\mu}, \gamma_{\nu}\right]_{+}=2 i \sigma_{\mu \nu}} \\
{[V, \Gamma]=0}
\end{array}
$$

- physical rotation by $2 \pi / 3$

- $V^{3}=-1$: we are dealing with fermions

Repeating with other axes generates the 12 element tetrahedral group

- subgroup of the full hypercubic group

Odd-parity transformations double the symmetry group to 24 elements

- $V=\frac{1}{2 \sqrt{2}}\left(1+i \sigma_{15}\right)\left(1+i \sigma_{21}\right)\left(1+i \sigma_{52}\right)$

$$
[V, \Gamma]=0
$$

- permutes x_{1}, x_{2} axes
- $\gamma_{5} \rightarrow V^{\dagger} \gamma_{5} V=-\gamma_{5}$

Natural time axis along main diagonal $e_{1}+e_{2}+e_{3}+e_{4}$

- T exchanges the Fermi points
- increases symmetry group to 48 elements

Charge conjugation: equivalent to particle hole symmetry

- \mathcal{D} and $\mathcal{H}=\gamma_{5} \mathcal{D}$ have eigenvalues in opposite sign pairs

Special treatment of main diagonal

- interactions can induce lattice distortions along this direction
- $\frac{1}{a}(\cos (a p)-1) \bar{\psi} \Gamma \psi=O(a)$
- symmetry restored in continuum limit
- at finite lattice spacing can tune
- coefficient of $i \bar{\psi} \Gamma \psi$
dimension 3 operator
- 6 link plaquettes orthogonal to this diagonal
- zeros topologically robust under such distortions
- Nielsen Ninomiya, MC

Appendix A: Proof that there are only two zeros of $\mathcal{D}(p)$

- $\operatorname{Tr}\left(\gamma_{\mu}-\gamma_{\nu}\right) \mathcal{D}(p) \sim \sin \left(p_{\mu}-\pi / 4\right)-\sin \left(p_{\nu}-\pi / 4\right)$
- at a zero: $\cos \left(p_{\mu}-\pi / 4\right)= \pm \cos \left(p_{\nu}-\pi / 4\right)$
- all cosines equal in magnitude
- $\operatorname{Tr} \Gamma \mathcal{D}(p)=0 \Rightarrow \sum_{\mu} \cos \left(p_{\mu}-\pi / 4\right)=2 \sqrt{2}>2$
- all cosines positive
- at a zero: $\cos \left(p_{\mu}-\pi / 4\right)=+1 / \sqrt{2}$

All components of p_{μ} are equal and either 0 or $\pi / 2$

Appendix B: Actions from Karsten and Wilczek

- both equivalent up to a unitary transformation
- $\psi \rightarrow i^{x_{4}} \psi$

$$
D=\sum_{\mu=1}^{4} \gamma_{\mu} \sin \left(p_{\mu}\right)+\gamma_{4} \sum_{i=1}^{3}\left(1-\cos \left(p_{i}\right)\right)
$$

- last term removes all zeros except $\vec{p}=0, p_{4}=0, \pi$

Now x_{4} chosen as the special direction

- onsite term $\sim \gamma_{4}$ instead of $\sim \Gamma$
- $\vec{\gamma}^{\prime}=\vec{\gamma}, \gamma_{4}^{\prime}=-\gamma_{4}$
- $\gamma_{5}^{\prime}=-\gamma_{5}$

"Here's what l've learned: that you can't make fun of everybody, because some people don't deserve it." -- Don Imus

