Charmed Hadron Interactions

Liuming Liu*,${ }^{1,2}$ Huey-wen Lin, ${ }^{2}$ Kostas Orginos ${ }^{1,2}$ and NPLQCD collaboration
Department of Physics,College of William and Mary, Williamsburg, VA, 23187, USA

Jefferson Laboratory, Newport News, VA, 23606, USA

Introduction
 We study the scattering lenoths of charmed mesons with light hadrons in full QCD We use Fermilab formulation[1] for charm quark and domain wall fermions for light quarks and staggered sea quarks. In addition, the charmed baryon spectrum is also presented.

 Fermion Action

 Fermion Action}- Fermilab formulation (for charm quark)

$$
\begin{aligned}
S & =S_{0}+S_{B}+S_{E} \\
S_{0} & =\sum_{x} \bar{q}(x)\left[m_{0}+\left(\gamma_{0} \nabla_{0}-\frac{a}{2} \triangle_{0}\right)+\nu \sum_{i}\left(\gamma_{i} \nabla_{i}-\frac{a}{2} \triangle_{i}\right)\right] q(x) \\
S_{B} & =-\frac{a}{2} c_{B} \sum_{x} \bar{q}(x)\left(\sum_{i<j} \sigma_{i j} F_{i j}\right) q(x) \\
S_{E} & =-\frac{a}{2} c_{E} \sum_{x} \bar{q}(x)\left(\sum_{i} \sigma_{0 i} F_{0 i}\right) q(x)
\end{aligned}
$$

Incorporate interactions from both the small- and large-mass limits.

- Without imposing axis-interchange invariance.
- Coefficients must be mass dependent to eliminate lattice artifact for heavy quarks.

Domain wall fermions(for light quark)

- Preserve chiral symmetry well.
- Expensive in computation time
- Staggered fermions(for sea quark)
- Relatively cheap
- Tastes mixing.

Tuning the coefficients in Fermilab formulation

- Using the spin average mass of Charmonium $\left(\eta_{c}, J / \Psi\right)$ to tune the charm quark mass
Tuning the anisotropic to restore the dispersion relations. In S_{0}, the value of ν was tuned to be 1.265
Tuning the clover coefficients.
The tree level tadpole estimate of the clover coefficients is $C_{B}=C_{E}=1 / u_{0}^{3}$. Where u_{0} is the tadpole coefficients. We use the clover terms that depend on the bare velocity of light ν as suggested by Chen [3]:

$$
C_{B}=\frac{\nu}{u_{0}^{3}}, \quad C_{E}=\frac{1}{2}(1+\nu) \frac{1}{u_{0}^{3}}
$$

quark action test
The mass of Charmonium and hyperfine splitting compared with the experimental values

	Numerical	Experimental
$\frac{1}{4} m_{\eta_{c}}+\frac{3}{4} m_{J / \Psi}$	$3056.54(1.15)$	3067.67
$m_{J / \Psi}-m_{\eta_{c}}$	$97.3(1.5)$	117.061

The dispersion relations of mesons $D, D_{s}, \eta_{c}, J / \Psi$

> | | c^{-} |
| :---: | :---: |
| η_{c} | $0.989(0.005)$ |
| J / Ψ | $0.965(0.009)$ |
| D | $1.012(0.017)$ |
| D_{s} | $1.006(0.009)$ |

Numerical Ensembles

We employ the gauge configurations generated by the MILC collaboration. We use
he $20^{3} \times 64$ lattices generated at four values of light-quark masses. The lattice spacing $b=0.12406 \mathrm{fm}$. The details of the ensembles are listed below.

Ensemble $\quad b m_{l} b m_{\mathrm{s}} b m_{l}^{d w f} b m^{d w f} \sharp$ of prop
$2064521 \mathrm{~b} 676 \mathrm{~m} 007 \mathrm{~m} 0500.0070 .0500 .0081 \quad 0.0814450$
 2064421 b676m010m050 0.0100 .0500 .01380 .081 $\begin{array}{llllll}2064 f 21 \mathrm{~b} 781 \mathrm{~m} 030 \mathrm{~m} 050 & 0.030 & 0.050 & 0.0478 & 0.081 & 380\end{array}$

Charmed Baryon Spectrum
-The masses of single charmed and double charmed baryon at four different light quark masses are shown in the following figure. The masses are extrapolated linearly to the physical point

The mass difference between single charmed baryons are shown in the right figure. Similar work has been done using staggered light quark ac tion[6]. We got comparable results. The deviation from experiment prob ably due to lattice artifacts.

Charmed Hadron Scattering

Two hadrons in a finite box

The total energy of two hadrons is obtained from the four-point correlation func tion:
$G^{h_{1}-h_{2}}(t)=\left\langle\mathcal{O}^{h_{1}}(t) \mathcal{O}^{h_{2}}(t)\left(\mathcal{O}^{h_{1}}(0) \mathcal{O}^{h_{2}}(0)\right)^{\dagger}\right\rangle$

Lüscher has shown that the scattering phase shift is related to the energy shift $(\triangle E)$ of the total energy of the two hadrons relative to the total energy of individual hadron $[4]$. To extract $(\triangle E)$, let's define a ratio $R^{h_{1}-h_{2}}(t)$:

$$
R^{h_{1}-h_{2}}(t)=\frac{G^{h_{1}-h_{2}}(t, 0)}{G^{h_{1}}(t, 0) G^{h_{2}}(t, 0)} \longrightarrow \exp (-\triangle E \cdot t)
$$

where $G^{h_{1}}(t, 0)$ and $G^{h_{2}}(t, 0)$ are corresponding two-point functions.
The momentum p was related to $\triangle E$ by

$$
\triangle E=\sqrt{p^{2}+m_{h_{1}}^{2}}+\sqrt{p^{2}+m_{h_{2}}^{2}}-m_{h_{1}}^{2}-m_{h_{2}}^{2}
$$

The phase shift is obtained from the following relation

$$
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\left(\frac{p L}{2 \pi}\right)^{2}\right)
$$

If the interaction range is smaller than half of the lattice size, the s-wave phase shift can be written a

$p \cot \delta(p)=\frac{1}{a}+\mathcal{O}\left(p^{2}\right)$

where a is the scattering length. We will use this relation to get the scattering lengths.

- Numerical results

The scattering lengths of each channel at four values of light quark masses a well as linear extrapolations are shown below.

trapolated values of scattering lengths:

Channel	Scattering lengths (fm)
$\eta_{c}-\pi$	$0.00(0.01)$
$\eta_{c}-\rho$	$0.03(0.05)$
$\eta_{c}-N$	$0.18(0.09)$
$J / \Psi-\pi$	$-0.01(0.01)$
$J / \Psi-N \operatorname{spin} 1 / 2$	$-0.05(0.77)$
$J / \Psi-N \operatorname{spin} 3 / 2$	$0.24(0.35)$
$J / \Psi-\rho \operatorname{spin} 0$	$0.00(0.06)$
$J / \Psi-\rho \operatorname{spin} 1$	$0.01(0.06)$
$J / \Psi-\rho \operatorname{spin} 2$	$0.01(0.06)$
$D-\pi$	$-0.14(0.04)$
$D-K$	$-0.23(0.04)$
$D_{s}-\pi$	$0.00(0.01)$
$D_{s}-K$	$-0.31(0.02)$

Conclusions

- For the channels of charmonium with light hadrons and $D_{s}-\pi$ channel, the scattering lengths are zero or close to zero. The interactions are weak due to the fact that there is no quark exchange diagram. Gluon exchange plays essentia role in these channels.
- For the $D-\pi, D_{s}-\pi, D_{s}-K$ channels, we found relatively strong repulsive interactions
- Need to improve statistics.

References

. Aida X. El-Khadra, Andreas S. Kronfeld, and Paul B. Mackenzie, Phys. Rev. D

 55, 3933 (1997).. Kazuo Yokokawa, Shoichi Sasaki, Tetsuo Hatsuda and Arata Hayashigaki, Phys Rev. D 74, 034504 (2006).
3. Ping Chen , Phys. Rev. D 74, 034504 (2006)
4. M. Lüscher, Commun. Math. Phys. 105, 153(1986)
5. Silas R. Beane, Kostas Orginos, Martin J. Savage , "Hadronic Interactions from attice QCD" (2008)
6. Heechang Na and Steven Gottlieb, PoS(LATTICE 2007)124

