Phase diagram evolution by finite coupling effect

in color SU(3) SC-LQCD at finite T and density

Kohtaroh Miura Noboru Kawamoto Akira Ohnishi

Introduction

2: Strong coupling lattice QCD

- 1. SC-LQCD is an "Analytic" LQCD with strong coupling expansion.
- 2. No sign problem.
- 3. Should be consistent with Monte-Carlo in strong coupling region.
- 4. Long history in the study of chiral phase transitions.

4. Motivations

- 1. How can SCLim QCD and the real world be connected?
- 2. How is the ratio mu_c/T_c modified by the finite coupling?

Formulations

Results & Discussions

 $F_{eff}(\sigma) = \frac{C_2(T, \mu, g)}{2} \sigma^2 + \frac{C_4(T, \mu, g)}{\Delta} \sigma^4 + \dots$

Chiral cond. & Density Chiral condensate $\sigma = 0, \rho > 0$ Quark Number Density $\sigma = 0, \rho > 0$ $\sigma < \sigma_0, \rho > 0$ $\sigma < \sigma_0, \rho > 0$ Quark Number Density $\sigma = 0, \rho > 0$ $\sigma < \sigma_0, \rho > 0$ The chiral symmetry is partially restored at small T and large μ !!

Summary

- 1. We investigated the phase diagram evlution by 1/g^2 in the strong coupling lattice QCD with one species of staggered fermion.
- 2. The ratio (μ _c/T_c) became closer to the expected real world value by 1/g2 effects. (SCLim: 0.3, Expected: 2.0, Current: 1.0 at 1/g^2=0.5).
- 3. The order of phase transition on the T axis changed to 1st from 2nd by 1/g2 effects, and this may reflect on the feature of the four tastes system.
- 4. In the low temperature region, we found the new kind of phase structure, where the chiral symmetry was found to be partially restored.