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We study the equation of state in two-flavor QCD at finite temperature and density.  Simulations are made with the RG-improved gluon action and the clover-improved Wilson quark action.  
Along the lines of constant physics for  mPS/mV = 0.65 and 0.80, we compute the derivatives of the quark determinant with respect to the quark chemical potential μq up to the fourth order 

at μq =0.  We adopt several improvement techniques in the evaluation.  We study thermodynamic quantities and quark number susceptibilities at finite μq using these derivatives. We find 
enhancement of the quark number susceptibility at finite μq, in accordance with previous observations using staggered-type quarks.  This suggests the existence of a nearby critical point.  

1. Introduction
   Finite density QCD has been studied on the lattice mainly using staggered-type 
quarks. However, because the expected O(4) universality of the deconfining transition 
in two-flavor QCD has not been confirmed with staggered-type quarks, the results 
may contain sizable lattice artifacts. Therefore, we need to crosscheck the results with 
different lattice actions. We study it with Wilson-type quarks, with which the O(4) 
scaling has been confirmed on current lattices.
   Because Wilson-type quarks are numerically more intensive, we have to adopt/
develop several improvement techniques.  We adopt a hybrid method of Taylor 
expansion and spectral reweighting, and apply a couple of improvement tricks.

2. Formulation
    We extend the study by the CP-PACS Collaboration at μq=0 [Phys. Rev. D63, 034502 

(2001); D64, 074510 (2001)] to finite densities.  
Preliminary reports have been presented at 
Lattice 2006 and 2007.
Lattice action:
      2-flavor clover-improved Wilson quarks
      coupled with RG-improved Iwasaki glue.
Lattice size:  16^3 x 4
Simulations are carried out along the lines of 
constant physics for mPS/mV = 0.65 and 0.80. 1.40 1.60 1.80 2.00 2.20
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3.Taylor expansion up to μq^4
Grand canonical potential:

where M is the quark matrix.  Similar expansions can be written down for quark 
number density and its susceptibility.
   We evaluate the traces with the random noise method. (i) Because the elements off-
diagonal in color and spin indices are not suppressed by |x-y| with Wilson-type quarks, 
the number of the same-magnitude off-diagonal elements in the quark matrix is 11 
times larger than the diagonal one.  This is different from the case of staggered-type 
quarks, in which off-diagonal elements in spin indices are slightly suppressed by the 
spatial offset.  Because a large number of noises is required to pick up a signal from 
data with S/N = 1/11, we decide not to apply the noise method for color and spin 
indices and generate noise vectors only for spatial indices, i.e. we repeat the inversion 

of M for each color and spin indices.  (ii) We find that the dominant errors are from D1  

which has much larger fluctuations than other traces. We adopt 10-40 times more 

noise vectors for D1. while we generate only 10 noise vectors for other traces.

   Results for Δp = p(μq)-p(0),  quark number density,  and quark number as well as 
isospin susceptibilities at mPS/mV = 0.65 are as follows:
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4. Improvement:  A Hybrid Method
   Evaluation of Dn with n > 4 is compuationally demanding. Here, we note that Dn = 0 at n > 4 for free quarks. Therefore, 

at high temperatures, we may approximate Dn = 0 for n > 4 in the evaluation of cn with n > 4.  This corresponds to a 

hybrid reweighting method in which the grand canonical potential is approximated by a truncated Taylor expansion 

with Nmax = 4.  
We have

with                                                                                            and

   In a previous study, SE noted that the θ-distribution is well described by a Gaussian form, and showed that this fact can 

be used to carry out the θ-averaging with small errors [Phys.Rev.D77,014508(2008)]. 
We find that our data are also well Gaussian:

We thus have

The remaining F-averaging at finite μq can induce large statistical fluctuations due to the factor e^F.  At small μq, the 
problem can be largely resolved by shifting β adopting a reweighting method because F is sensitively correlated with the 

gauge action.   We calculate a optimal β by minimizing the fluctuation in                                                  where
                                           is the extended plaquette for our gauge action.  The small shifts in β (which turn out to be 
less than about 0.03) are translated to slight shifts in T in the final plots.
  
     With these improvements, we obtain at mPS/mV = 0.65

Here, we calculate the quark number density and its susceptibility by numerical differentiations of the grand canonical 
potential using the following thermodynamic formulae:

We find reduction of statistical fluctuations over the results of the previous section.   Resulting T- and μq-dependences are 
smooth and in accordance with theoretical expectations.  Therefore, we think that the assumptions introduced in the 
course of the improvement calculations are well under control.
    Results at mPS/mV = 0.80 are 
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4.Conclusions
   We have carried out the first calculation of the equation of state at non-zero densities with two flavors of 
improved Wilson quarks.  Statistical fluctuations of physical observables at finite density are much severer with 
Wilson-type quarks than with staggered-type quarks.  To tame the problem, we combined and developed 
several improvement techniques.
   We find that the peak height of the quark number fluctuation at the pseudo-critical temperature increases as 

μq increases.  In contrast, isospin susceptibilities show no sharp peaks at the pseudo-critical temperature.  
These results agree with previous observations by the Bielefeld-Swansea Collaboration using staggered-type 
quarks.  

    This suggests a critical point at finite μq, which is expected to locate at the end point of a first order 
transition line between confining and deconfining phases in the coupling parameter space of T and μq.
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Test by the Binder cummurant:
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