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Introduction

We present Monte Carlo lattice calculations of the N = 1 SYM theory
spectrum. The theory possesses one flavour (effectively Nf = 1

2) of Ma-
jorana fermions in the adjoint representation of the colour gauge group
SU(2). The interesting feature is the SUSY restoration in the continuum
limit. The masses of the low lying bound states are expected to form
two chiral supermultiplets as described by the effective actions [1, 2] (see
Figure).

• SUSY is softly broken by a non-zero gluino mass

• U(1)λ chiral symmetry is broken by anomaly to ZNc

• ZNc
is spontaneously broken to Z2 by the gluino condensate

〈

λ̄λ
〉

• Two vacua coexist: first order phase transition

• Confinement is realized by colorless bound states
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Simulation of SYM on the lattice

Curci-Veneziano Lattice action

• We use the Curci-Veneziano action to simulate the Wilson gluinos (with eventually improved gauge
action). The effective action for the gauge links reads

SCV = β
(

c0
∑

pl

(

1 − 1
Nc

ReTrUpl

)

+ c1
∑

rect

(

1 − 1
Nc

ReTrUrect

))

− 1
2logdetQ[U ].

•Q : Dirac-Wilson fermion matrix

Q
aαbβ
xy [U ] = δabδxyδαβ − κ

∑4
µ=1

(

δy,x+µ̂(1 + γ
αβ
µ )V ab

µ (x) + δy+µ̂,x(1 − γ
αβ
µ )V ab

µ
T

(y)
)

,

where V are the real adjoint links V ab
µ (x) ≡ 2Tr[U

†
µ(x)T aUµT b] = [V ab

µ (x)]∗ = [V ab
µ

T
(x)]−1

• ADVANTAGES: low computational cost, theoretically well-defined

• PRICE TO PAY: Pfaffian sign problem + fine-tuning towards the SUSY (∼ chiral) point

• SUSY and chiral symmetry are expected to be recovered in the continuum limit at mg̃ = 0

Algorithms

• The fractional power of the fermion determinant is represented by the pseudo-fermion integral with a
polynomial approximation

|det(Q[U ])|Nf ∝
∫

D[Φ†, Φ]exp
{

−
∑

xy Φ
†
yPn1(Q

†Q)yxΦx

}

• Keep n1 small and correct the first polynomial approximation by a global correction step: Two-Step
Multi-Boson algorithm [3]: local updating + noisy correction step

|det(Q[U ])|Nf ≃
1

det
(

Pn1(Q̃
2)Pn2(Q̃

2)
)

• Recently, we implemented a two-step Polynomial-Hybrid-Monte-Carlo algorithm [4]: sequence of PHMC
trajectories + noisy correction step

• Algorithm improvements: determinant break-up, even-odd preconditioning

Improved lattice actions

• Besides Wilson (plaquette) gauge action in TSMB runs (c0 = 1, c1 = 0), we implemented Tree-Level
Symanzik improved action to lower lattice artifacts in the new PHMC runs

c0 = 5
3 and c1 = − 1

12

• In the fermionic part of the action we used one-step Stout smearing (ρ = 0.15) which is useful for
reducing the fluctuation of the smallest eigenvalues
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Simulation details & Analysis

SETUP of TSMB runs

Run L3.T β κ # Sweep Anc % τplaq ǫ λ n1 n2 offset

(a) 163.32 2.3 0.1955 12500 50-80 167.6 2.0 · 10−5 4.0 40 800 5

(b) 163.32 2.3 0.1960 23500 50-80 181.1 4.0 · 10−6 4.0 40 1800 5

(c) 163.32 2.3 0.1965 18000 50-62 254.2 4.0 · 10−6 4.0 40 1800 10

SETUP of PHMC Runs

Run L3.T β κ # Traj. Anc % τplaq

A 163.32 1.6 0.1800 2500 95.6 7.5

B 163.32 1.6 0.1900 2700 96.4 3.08

C1a 163.32 1.6 0.2000 1973 82.9 4.91

C1b 163.32 1.6 0.2000 8874 88.3 27.6

C2 243.48 1.6 0.2000 6465 88.6 7.4

D 163.32 1.6 0.2020 6947 88.5 45.7

Cstout 243.48 1.6 0.1570 2110 92.4 7.2

•The MD equations are implemented by Sexton-
Weingarten integrator with multiple-time scale

• Pfaffian sign is computed with ARPACK and
checked with spectral flow method

•The Pfaffian sign and the correction factors C
are included by the reweighting in the analysis

〈A〉 =
〈sign[U ]C[U ]A[U ]〉g

〈sign[U ]C[U ]〉g

• One key for the reliable analy-
sis of the SUSY spectrum is the
physical volume

• On TSMB runs we have r0
a ∼ 8

→ small volume L3 ∼ (1fm)3 on
163 · 32 lattices

• On the new produced PHMC
ensembles r0

a ∼ 4, the spatial

volume is L3 ∼ (2.2fm)3

• Larger lattices are being simu-
lated, on 243 · 48 lattices L ∼
3fm

• We found few configurations (∼
15 out of 5160) with negative
sign of the Pfaffian at κ = 0.202

Determination of masses

•The particle masses in lattice units are calculated from the zero-momentum correlation
function of the corresponding interpolating operator O

•Adjoint mesons: in analogy with the flavour singlet QCD mesons the correlator consists of
a connected and a disconnected part

•We use the Stochastic Estimators Technique (SET) with spin dilution, and the Improved
Volume Source Technique (IVST) [8] to compute the all-to-all propagators

• a − η′ : O = λ̄γ5λ dominated by disconnected part for κ → κcr
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• a−f0 : O = λ̄λ. As in QCD (and in experiments), the mass of the scalar meson is difficult
to determine, higher statistics are needed

•Glueballs: O0++ = Tr[U12 + U23 + U31], O0−+ =
∑

R∈Oh
(Tr[W (CR)] − Tr[W (RCR)])

•APE smearing combined with variational method

• χl/χh Gluino-glueball:

Oα =
∑

i,j σ
αβ
ij Tr[Pijλ

β]

To optimize the overlap
with the physical state we
used Jacobi smearing for
gluinos and APE smearing
for links
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Chiral (SUSY) limit

OZI Arguments

•The connected part of the a − η′ correlator refers
to the adjoint pseudoscalar a − π which is not a
physical particle in SYM

•The vanishing of the a − π mass can be used to
determine the chiral limit mg̃ → 0, while a − η′ is
expected to remain massive

•Within the OZI picture, and when approaching the
chiral limit, the mass square of a − π behaves like

(amπ)2 = A(1
κ − 1

κcr
)
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SUSY Ward-Takahashi identities

•The gluino mass mg̃ is defined through the SUSY WI’s [7];
mg̃ → 0 in the chiral (SUSY) limit

•The gluino mass behaves linearly in 1/κ; up to renormal-
ization constants:

amg̃ ∼ 1
2(

1
κ − 1

κcr
)

•On TSMB ensembles, from the linear extrapolation of
(amπ)2 we find κOZI

cr (β = 2.3) = 0.1969, which is con-
sistent with the estimate using the WI’s

•On PHMC ensembles (no Stout), we determine κOZI
cr (β =

1.6) = 0.2025
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Conclusion & References

Conclusion & Outlook

•We presented new analysis of the SYM spectrum for lighter gluino masses as a continuation
of the early DESY-Münster-collaboration investigations [6, 5]

• In this work, a first simulation of SYM with PHMC+NC algorithm [4] using improved
action and Stout smearing has been performed

•Analysis of mass spectrum, WI’s and chiral condensate on large volume and stout config-
urations is ongoing

• In the next steps, investigation of chiral transition is planned

• Better variance reduction methods and acceleration algorithms are being tested to opti-
mize the disconnected correlator analysis (e. g. hybrid method, spectral decomposition
and deflation)
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