

SIMULATION OF $4d \mathcal{N} = 1$ SUSY YANG-MILLS THEORY WITH LIGHT WILSON GLUINOS

K. Demmouche^a, F. Farchioni^a, A. Ferling^a, I. Montvay^b, G. Münster^a, E. E. Scholz^c, J. Wuilloud^a

^a Universität Münster, Germany; ^b DESY Hamburg, Germany;

^c Brookhaven National Laboratory, USA

LATTICE 2008, WILLIAMSBURG, VA, USA

SETUP of TSMB runs

Run	$L^3.T$	eta	κ	# Sweep	$A_{ m nc}$ %	$ au^{plaq}$	ϵ	λ	n_1	n_2	offset
(a)	$16^3.32$	2.3	0.1955	12500	50-80	167.6	$2.0 \cdot 10^{-5}$	4.0	40	800	5
(b)	$16^{3}.32$	2.3	0.1960	23500	50-80	181.1	$4.0 \cdot 10^{-6}$	4.0	40	1800	5
(c)	$16^3.32$	2.3	0.1965	18000	50-62	254.2	$4.0 \cdot 10^{-6}$	4.0	40	1800	10

SETUP of PHMC Runs

Run	$L^3.T$	β	κ	# Traj.	A_{nc} %
А	$16^3.32$	1.6	0.1800	2500	95.6
В	$16^3.32$	1.6	0.1900	2700	96.4
C1a	$16^3.32$	1.6	0.2000	1973	82.9
C1b	$16^3.32$	1.6	0.2000	8874	88.3
C2	$24^3.48$	1.6	0.2000	6465	88.6
D	$16^3.32$	1.6	0.2020	6947	88.5
C_{stout}	$24^3.48$	1.6	0.1570	2110	92.4

• The MD equations are implemented by Sexton-Weingarten integrator with multiple-time scale

- Pfaffian sign is computed with ARPACK and checked with *spectral flow* method
- The Pfaffian sign and the correction factors Care included by the *reweighting* in the analysis

 $\langle A \rangle = \frac{\langle sign[U]C[U]A[U] \rangle_g}{\langle sign[U]C[U] \rangle_g}$

OZI Arguments

- The connected part of the $a \eta'$ correlator refers to the adjoint pseudoscalar $a - \pi$ which is not a physical particle in SYM
- The vanishing of the $a \pi$ mass can be used to determine the chiral limit $m_{\tilde{a}} \to 0$, while $a - \eta'$ is expected to remain massive
- Within the OZI picture, and when approaching the chiral limit, the mass square of $a - \pi$ behaves like $(am_{\pi})^2 = A(\frac{1}{\kappa} - \frac{1}{\kappa})$

Conclusion & Outlook

- of the early DESY-Münster-collaboration investigations [6, 5]
- action and Stout smearing has been performed
- urations is ongoing
- In the next steps, investigation of chiral transition is planned
- and deflation)

Simulation details & Analysis

- 3.08 4.91
- 27.6 7.4
- 45.77.2

- One key for the reliable analysis of the SUSY spectrum is the physical volume
- On TSMB runs we have $\frac{r_0}{a} \sim 8$ \rightarrow small volume $L^3 \sim (1 \text{fm})^3$ on $16^3 \cdot 32$ lattices
- On the new produced PHMC ensembles $\frac{r_0}{a} \sim 4$, the spatial volume is $L^3 \sim (2.2 \text{fm})^3$
- Larger lattices are being simulated, on $24^3 \cdot 48$ lattices $L \sim$
- We found few configurations (\sim 15 out of 5160) with negative sign of the Pfaffian at $\kappa = 0.202$

- a connected and a disconnected part

- to determine, higher statistics are needed

- χ_l/χ_h Gluino-glueball: $\mathcal{O}^{\alpha} = \sum_{i,j} \sigma_{ij}^{\alpha\beta} \operatorname{Tr}[P_{ij}\lambda^{\beta}]$ To optimize the overlap with the physical state we used Jacobi smearing for gluinos and APE smearing for links

Münster and SUN systems at RWTH-Aachen.