The Landau gauge lattice ghost propagator in stochastic perturbation theory
 F. Di Renzo ${ }^{1}$, E.-M. Ilgenfritz ${ }^{2}$, H. Perlt ${ }^{3}$, A. Schiller ${ }^{3}$ and C. Torrero ${ }^{4}$

${ }^{1}$ University of Parma, ${ }^{2}$ Humboldt-Universität zu Berlin, ${ }^{3}$ Universität Leipzig, ${ }^{4}$ Universität Regensburg LATTICE 2008, Williamsburg, VA, July 14 - July 19, 2008
Abstract: We present one- and two-loop results for the ghost propagator in Landau gauge calculated in numerical stochastic perturbation theory (NSPT).
The one-loop results are compared with available standard lattice perturbation theory in the infinite volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing "finite lattice logs". We find agreement with the one-loop result from standard lattice perturbation theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI'-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy. Supported by DFG under contract FOR 465

