

The Landau gauge lattice ghost propagator in stochastic perturbation theory F. Di Renzo¹, E.-M. Ilgenfritz², H. Perlt³, A. Schiller³ and C. Torrero⁴

¹University of Parma, ²Humboldt-Universität zu Berlin, ³Universität Leipzig, ⁴Universität Regensburg LATTICE 2008, Williamsburg, VA, July 14 - July 19, 2008

Abstract: We present one- and two-loop results for the ghost propagator in Landau gauge calculated in numerical stochastic perturbation theory (NSPT). The one-loop results are compared with available standard lattice perturbation theory in the infinite volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing "finite lattice logs". We find agreement with the one-loop result from standard lattice perturbation theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI'-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy. Supported by DFG under contract FOR 465

NSPT and Langevin equation

Numerical stochastic perturbation theory (NSPT) (e.g. Review by Scorzato/Di Renzo JHEP 2004) is a powerful tool to study higher loop contributions in lattice perturbation theory (LPT). Applications: Wilson loops, Z-factor for bilinear quark operators,...

New application: The two-loop ghost propagator

Use the lattice Langevin equation with time t

 $\frac{\partial}{\partial t} U_{x,\mu}(t;\eta) = i \left(\nabla_{x,\mu} S_G[U] + \eta_{x,\mu}(t) \right) \ U_{x,\mu}(t;\eta)$

 η – Gaussian random noise, $\nabla_{x,\mu}$ – left Lie derivative within the gauge group.

For $t \to \infty$ the gauge fields are distributed according to the measure $\exp(-S_G[U])$. Here we use the Wilson gauge action S_G .

Discretize $t = n\epsilon$ and get the Langevin equation solved within the Euler scheme: $U_{x,\mu}(n+1;\eta) = \exp(F_{x,\mu}[U,\eta]) \ U_{x,\mu}(n;\eta)$

 $F_{x,\mu}[U,\eta] = i(\epsilon \nabla_{x,\mu} S_G[U] + \sqrt{\epsilon} \eta_{x,\mu})$

Results: data and statement of problem

From the relation $\alpha_{\rm RI'} = \alpha_0 + \left(-\frac{22}{3}\log(a\mu) + 73.9355\right) \,\alpha_0^2 + \dots,$ with bare $\alpha_0 = N_c/(8\pi^2\beta)$, we get for the measured dressing function:

 $J^{2-\text{loop}}(a,q,\beta) = 1 + \frac{1}{2} \left(J_{1,1} \log(aq)^2 + J_{1,0} \right) +$

 $\frac{1}{\beta^2} \left(J_{2,2} \, \log^2(aq)^2 + J_{2,1} \, \log(aq)^2 + J_{2,0} \right)$

Aim of this first investigation:

 ${f n}$ of unknown Jl of known $J_{
m 1.0}$ One- and two-loop results for the dressing function

Measured ghost dressing function $\hat{J}(\hat{q})$ vs. \hat{q}^2 for all inequivalent lattice momentum 4-tuples near diagonal for L = 6, 8, 10, 12, 14 and $\varepsilon = 0.01$. Left: The one-loop (β^{-1}) and two-loop (β^{-2}) contributions, right: the vanishing $(\propto \beta^{-3/2})$ contribution.

	ing the Lange		
	nd use the expans		
$U_{x,\mu}(t;r)$	$(p) \rightarrow 1 + \sum_{l>0} \beta^{-l/2} l$	$U^{(i)}_{x,\mu}(t;\eta)$	
-	juation transforms , one <mark>for</mark> each <mark>per</mark> t	•	
$U^{(1)'} = U$			
$U^{(2)'} = U$	$F^{(2)} - F^{(2)} + \frac{1}{2}(F^{(1)})$	$()^{2} - F^{(1)}U^{(1)}$	
higher orders bec	se η is fed in only come stochastic by lds of lower order.	propagation of	-
	uge field variables rcing unitarity in a		a),
$A_{x,\mu}(t;\eta) o \sum_{l>0} A_{x,\mu}(t;\eta)$	$\beta^{-l/2} A^{(l)}_{x,\mu}(t;\eta),$	$A^{(l)}_{x,\mu} = T^a A^a_x$	$_{l},(l)$
A	$A^{(l)\dagger} = -A^{(l)} ,$	$\mathrm{Tr}A^{(l)} = 0$	
•	ge is reached by i e Fourier acceleration	•••	
Results	: the limits to	be taken	
	: the limits to	be taken	
• Limit $\varepsilon \to 0$ Different step siz	es: $arepsilon=$ 0.07,, 0	.01 \rightarrow Langevir	
• Limit $\varepsilon \to 0$ Different step siz	es: $\varepsilon = 0.07, \dots, 0$ at $\varepsilon = 0$ by extra	.01 \rightarrow Langevir	
• Limit $\varepsilon \to 0$ Different step sizes result for fixed L $\int_{(1,1,1,1)}^{0.51} \int_{(1,1,1,1)}^{0.505} \int_{(1,1,1,1)}^{0.50} \int_{0.495}^{0.495} \int_{0.495}^{0$	es: $\varepsilon = 0.07, \dots, 0$ at $\varepsilon = 0$ by extra	.01 \rightarrow Langevin polation: L = 12 1, 1, 1, 1) 2 $0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0$ ε he one-loop (left) and	0.07
• Limit $\varepsilon \to 0$ Different step sizes result for fixed L $\int_{(1,1,1,1)}^{0.51} \int_{(1,1,1,1)}^{0.505} \int_{(1,1,1,1)}^{0.50} \int_{0.495}^{0.495} \int_{0.495}^{0$	es: $\varepsilon = 0.07,, 0$ at $\varepsilon = 0$ by extra (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.01 \rightarrow Langevin polation: L = 12 1, 1, 1, 1) 2 $0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0$ ε he one-loop (left) and	0.07
• Limit $\varepsilon \to 0$ Different step sizes in the second step is the second step in the second step is the secon	es: $\varepsilon = 0.07,, 0$ at $\varepsilon = 0$ by extra 1.37 (a) (b) (a) (b) (a) (b) (a) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (a) (a) (b) (a) (a) (b) (a) (a) (a) (b) (a) (.01 \rightarrow Langevir polation: L = 12 1,1,1,1) $0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0.06$ he one-loop (left) and momentum tuple (1, 1, 1, 1)	1).
• Limit $\varepsilon \to 0$ Different step size result for fixed L $\int_{(1,1,1,1)}^{0.50} \int_{(1,1,1,1)}^{0.50} \int_{(1,1,1,1)}^{0.50} \int_{(1,1,1,1)}^{0.50} \int_{0.495}^{0.495} \int_{0.495}^{0.495} \int_{0.495}^{0.60} \int_{0.01}^{0.02} \int_{0.03}^{0.03} \int_{0.50}^{0.60} \int_{0.495}^{0.60} \int_{0.4$	es: $\varepsilon = 0.07,, 0$ at $\varepsilon = 0$ by extra 1.37 (a) (b) (a) (b) (a) (b) (a) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (a) (a) (b) (a) (a) (b) (a) (a) (a) (b) (a) ($.01 \rightarrow \text{Langevir}$ polation: L = 12 1, 1, 1, 1) 2 $0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0$ he one-loop (left) and momentum tuple (1, 1, 1, 1, 1) odard LPT both inite lattices –	1).

Ghost propagator in standard LPT				
Discuss two forms of the dressing function:				
$J^{(l)}(aq) = (aq)^2 G^{(l)}, \hat{J}^{(l)}(\hat{q}) = \hat{q}^2 G^{(l)}$				
Renormalization in the RI'-MOM scheme:				
$J^{\mathrm{RI}'}(q,\mu,lpha_{\mathrm{RI}'}) = rac{J(a,q,lpha_{\mathrm{RI}'})}{Z_{\mathrm{gh}}(a,\mu,lpha_{\mathrm{RI}'})}$				
$J^{\mathrm{RI}'}(q,\mu,lpha_{\mathrm{RI}'}) _{q^2=\mu^2}=1.$				
Restricting to two loop order, we have $e.g.$				
$J(a, q, lpha_{ ext{RI'}}) ~=~ 1 + \sum_{i=1}^{2} lpha_{ ext{RI'}}^{i} \sum_{k=0}^{i} z_{i,k}^{ ext{gh,RI'}} \left(rac{1}{2} \log(a^2 q^2) ight)^k$				
$\left. z_{i,i}^{\mathrm{gh,RI}'}: ight.$ known from continuum PT $\left. z_{i,k}^{\mathrm{gh,RI}'} ight _{i>k>0}: ight.$ partly known from continuum PT				
$z_{1,1}^{\mathrm{gh,RI}'} = -\frac{3}{2} N_c , z_{2,2}^{\mathrm{gh,RI}'} = -\frac{35}{8} N_c^2 , z_{2,1}^{\mathrm{gh,RI}'} = \left(-\frac{271}{24} + \frac{35}{6} z_{1,0}^{\mathrm{gh,RI}'}\right) N_c$				