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Abstract: We present one- and two-loop results for the ghost propagator in Landau gauge calculated in numerical stochastic perturbation theory (NSPT).

The one-loop results are compared with available standard lattice perturbation theory in the infinite volume limit. We discuss in detail how to perform the

different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing “finite lattice logs”. We find agreement with

the one-loop result from standard lattice perturbation theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the

unknown constant contribution to the ghost self-energy in the RI’-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy.
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NSPT and Langevin equation

Numerical stochastic perturbation theory (NSPT)
(e.g. Review by Scorzato/Di Renzo JHEP 2004) is a
powerful tool to study higher loop contributions in
lattice perturbation theory (LPT).
Applications: Wilson loops, Z-factor for bilinear
quark operators,...

New application: The two-loop ghost propagator

Use the lattice Langevin equation with time t
∂

∂t
Ux,µ(t; η) = i (∇x,µSG[U ] + ηx,µ(t)) Ux,µ(t; η)

η – Gaussian random noise,
∇x,µ – left Lie derivative within the gauge group.

For t → ∞ the gauge fields are distributed
according to the measure exp(−SG[U ]).
Here we use the Wilson gauge action SG.

Discretize t = nǫ and get the Langevin equation
solved within the Euler scheme:

Ux,µ(n + 1; η) = exp(Fx,µ[U, η]) Ux,µ(n; η)

Fx,µ[U, η] = i(ǫ∇x,µSG[U ] +
√

ǫ ηx,µ)

Implementing the Langevin equation

Rescale ε = βǫ and use the expansion (g ∝ β−1/2):

Ux,µ(t; η) → 1 +
X

l>0

β
−l/2

U
(l)
x,µ(t; η)

The Langevin equation transforms to a system of
updates U → U ′, one for each perturbative U (l):

U (1)′ = U (1) − F (1)

U (2)′ = U (2) − F (2) +
1

2
(F (1))2 − F (1)U (1)

· · ·

The random noise η is fed in only through F (1),
higher orders become stochastic by propagation of
noise through fields of lower order.

Keep also the gauge field variables (in the algebra),
A = log U , enforcing unitarity in all orders in g:

Ax,µ(t; η) →
X

l>0

β−l/2A(l)
x,µ(t; η) , A(l)

x,µ = T aAa,(l)
x,µ

A
(l)†

= −A
(l)

, TrA
(l)

= 0

The Landau gauge is reached by iterative gauge
trafo’s (perturbative Fourier acceleration, Davies et al.).

Ghost propagator in NSPT

The continuum ghost propagator in momentum
space is defined as Gab(q) = δabG(q2).

On the lattice we define

G(q̂(k)) =
1

N2
c − 1

Gaa(q̂(k)) =
1

N2
c − 1

D
TrM−1(k)

E
U

• M = −∇ · D(U) - the Faddeev-Popov operator,
• with D(U) - the lattice covariant derivative,
• M−1(k) - Fourier transform of the inverse FP op.,
• Lattice momenta: q̂µ(kµ) = 2

a sin

„
πkµ
Lµ

«
= 2

a sin
“aqµ

2

”
.

Perturbative expansion based on the mapping

A
(n)
x,µ → M (n) →

[

M−1
](n)

:
instead of inversion, recursive evaluation is possible:

h
M

−1
i(0)

=
h
M

(0)
i−1

h
M−1

i(n)

= −
h
M0

i−1 n−1X

j=0

M (n−j)
h
M−1

i(j)

Momentum space ghost propagator in NSPT from

[

M−1
](n)

→ G(n)(q̂(k)) = 〈k|
[

M−1
](n)

|k〉

Ghost propagator in standard LPT

Discuss two forms of the dressing function:

J (l)(aq) = (aq)2 G(l) , Ĵ (l)(q̂) = q̂2 G(l)

Renormalization in the RI’-MOM scheme:

JRI′(q, µ, αRI′) =
J(a, q, αRI′)

Zgh(a, µ, αRI′)

J
RI′

(q, µ, αRI′)|q2=µ2 = 1 .

Restricting to two loop order, we have e.g.

J(a, q, αRI′) = 1 +
2X

i=1

α
i
RI′

iX

k=0

z
gh,RI′
i,k

„
1

2
log(a

2
q

2
)

«k

zgh,RI′
i,i : known from continuum PT

zgh,RI′
i,k

∣

∣

∣

i>k>0
: partly known from continuum PT

z
gh,RI′
1,1 = −3

2
Nc , z

gh,RI′
2,2 = −35

8
N

2
c , z

gh,RI′
2,1 =

„
−271

24
+

35

6
z
gh,RI′
1,0

«
Nc

zgh,RI′
1,0 = 13.8257 , is known from one-loop LPT

zgh,RI′
2,0 is unknown

Results: data and statement of problem

From the relation
αRI′ = α0 +

(

−22
3 log(aµ) + 73.9355

)

α2
0 + . . . ,

with bare α0 = Nc/(8π
2β), we get for the measured

dressing function:

J
2−loop

(a, q, β) = 1 +
1

β

“
J1,1 log(aq)

2
+ J1,0

”
+

1

β2

“
J2,2 log2(aq)2 + J2,1 log(aq)2 + J2,0

”

Aim of this first investigation:

confirmation of known J1,0, determination of unknown J2,0

One- and two-loop results for the dressing function
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Ĵ
(3

/2
) (
q̂)

q̂2

ε = 0.01

L = 14
L = 12
L = 10
L = 8
L = 6

Measured ghost dressing function Ĵ(q̂) vs. q̂2 for all inequivalent lattice momentum

4-tuples near diagonal for L = 6, 8, 10, 12, 14 and ε = 0.01. Left: The one-loop

(β−1) and two-loop (β−2) contributions, right: the vanishing (∝ β−3/2) contribution.

Results: the limits to be taken

• Limit ε → 0

Different step sizes: ε = 0.07,..., 0.01 → Langevin
result for fixed L at ε = 0 by extrapolation:
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Linear plus quadratic correction extrapolation to ε = 0 of the one-loop (left) and

two-loop (right) ghost dressing function for lattice size 124 at momentum tuple (1, 1, 1, 1).

• Limits L → ∞ and a → 0

In order to make contact with standard LPT both
limits have to be performed.

Problem : How to represent – on finite lattices –
the logs that appear in the L → ∞ regime ?

Proposal: Replace divergent lattice integrals, that
give the logarithms, by finite lattice sums and use
these expressions in the fits at fixed L.

Handling the lattice logs encountered

Example: typical one-loop divergent integral

A(aq) = (4π)
2

Z π/a

−π/a

d4k

(2π)4

1

k̂2 d(k + q)
2

.

In the limit aq → 0 (Lüscher, Weisz):

A(aq) = − log(aq)2 + a1 , a1 = 2 + F0 − γE = 5.79201

On a lattice with finite L we calculate lattice sums like:

A(iq, L) =
1

L4

X

i1,i2,i3,i4

1hP4
µ=1 sin2

“
π
Liµ

”i hP4
ν=1 sin2

“
π
L(iν − i

q
ν)

”i

akµ =
2πiµ

L
, aqµ =

2πi
q
µ

L
, {iµ, i

q
µ} ∈

„
−L

2
,
L

2

–

This leads – for each L – to the replacement:

J1,0 log(aq)2 → −2J1,0 (A(iq, L) − a1)

Result: Better flattening for

the log-subtracted data

Original and remaining ’non-logarithmic’

contributions to Ĵ using logarithms and

lattice logarithms in one-loop and two-loop

as function of q̂2, here for a lattice 144.
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Results and Summary

Results
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Ĵ2,0;L

J2,0;L

The V → ∞ limit: volume dependence of the constants Ĵk,0;L and Jk,0;L

Linear extrapolation in 1/L4 for L = 10, 12, 14:

ĴFit
1,0 = 0.5246(22) , ĴFit

2,0 = 1.4737(118)

−→ z
gh,RI′
2,0 = −1.42(8.18)

Summary

• First two-loop calculation of the lattice ghost propagator.

• One-loop constant J1,0 agrees with known V → ∞ result.

• Two-loop constant J2,0 determined for the first time.

• Detailed analysis of all neccessary limits is performed.

• Proposal how to mimic logarithmic terms on finite lattices.

• Detailed comparison with Monte Carlo data next to be done.


