Heavy-light hadrons and their excitations

T. Burch, C. Hagen, C. B. Lang, M. Limmer, A. Schäfer (for the Bern-Graz-Regensburg Collaboration)

We study the excitations of hadrons containing a single heavy quark. We present meson and baryon mass splittings and ratios of meson decay constants resulting from quenched and dynamical two-flavor configurations. Light quarks are simulated using the chirally-improved (CI) lattice Dirac operator. The heavy quark is approximated by a static propagator, appropriate for the b quark on our lattices $(1/a \sim 1 - 2 \text{ GeV})$. We also include some preliminary calculations of the heavy-quark kinetic corrections to the states.

_				
SFB				
TR55				

Domain-Decomposition Improvement	Static-Light Correlato
Propagator (P) between regions 1 and 2 estimated using N random sources (χ):	Using different "wavefunctions" for the light-qu we construct the following correlators:
$P_{12} = -M_{11}^{-1}M_{12}P_{22}$	$C_{ij}(t) = \left< 0 \left (\bar{Q} O_j q)_t (\bar{q} \bar{O}_i Q)_0 \right 0 \right>$
$pprox - M_{11}^{-1} M_{12} rac{1}{N} \chi_2^n \chi_2^{n\dagger} P$	$= \left\langle \sum \operatorname{Tr} \left[\frac{1 + \gamma_4}{2} \prod^{t-1} U_4^{\dagger}(x + i\hat{4}) C \right] \right\rangle$
$pprox -rac{1}{N}\left(M_{11}^{-1}M_{12}\chi_2^n ight)\left(\gamma_5 P\gamma_5\chi_2^n ight)^\dagger$	$\bigvee_{x} \qquad \begin{bmatrix} 2 & 1 \\ i=0 \end{bmatrix}$

lark source and sink,

where x is in one domain and x + t4 is in the other. We then solve the generalized eigenvalue problem: $C(t) \ \vec{\psi}^{(\alpha)} = \lambda^{(\alpha)}(t, t_0) C(t_0) \ \vec{\psi}^{(\alpha)} \ .$

(1)

Interpolators / Lattices

_	label	j	J^P	states	operator
_	S	$\frac{1}{2}$	$(0,1)^{-}$	$B^{(*)} \; (B^{(*)}_s)$	$ar{Q}_a\gamma_{5,i}q_a$
_	<i>P</i> _	$\frac{1}{2}$	$(0,1)^+$	$B^*_{0,1} \ (B^*_{s0,1})$	$ar{Q}_a\gamma_i(D_i)_{ab}q_b$
_	P_+	$\frac{3}{2}$	$(1,2)^+$	$B_{1(2)}^{(st)} \ (B_{s1(2)}^{(st)})$	$\bar{Q}_a (\gamma_1 D_1 - \gamma_2 D_2)_{ab} q_b$
_	D_{\pm}	$\left(\frac{3}{2},\frac{5}{2}\right)$	$(1, 2, 3)^{-}$	$B_{2(3)}^{(*',*)} (B_{s2(3)}^{(*',*)})$	$\bar{Q}_a \gamma_5 (D_1^2 - D_2^2)_{ab} q_b$
_	Λ_Q	0	$\frac{1}{2}^+$	Λ_b (-)	$\epsilon_{abc}Q_aq_bC\gamma_5q_c$
					$i\epsilon_{abc}Q_aq_bC\gamma_4\gamma_5q_c$
	$\Sigma_Q^{(*)}$	1	$(\frac{1}{2},\frac{3}{2})^+$	$\Sigma_b^{(*)}$ ($\Omega_b^{(*)}$)	$\epsilon_{abc}Q_aq_bC\gamma_iq_c$
					$i\epsilon_{abc}Q_aq_bC\gamma_4\gamma_iq_c$

 $pprox -rac{1}{N}\psi_1^n\phi_2^{n\dagger}$.

Note: No sources needed in region 1 and those in region 2 should reach region 1 with one application of M. Random sources surrounding one boundary:

[1] T. Burch & C. Hagen, Comput Phys Commun 176, 137 [2] C. Michael & J. Peisa, Phys Rev D58, 034506

For sufficiently large t, the eigenvalues are $\lambda^{(\alpha)}(t,t_0) = c^{(\alpha)} e^{-(t-t_0)M^{(\alpha)}} \left[1 + O(e^{-(t-t_0)\Delta^{(\alpha)}}) \right] ,$

where $\Delta^{(\alpha)}$ is the energy difference to the closest state.

[3] C. Michael, Nucl Phys B259, 58 [4] M. Lüscher & U. Wolff, Nucl Phys B339, 222 [5] T. Burch, C. Gattringer, L. Y. Glozman, C. Hagen, & C. B. Lang, Phys Rev D73, 017502

We present results from three sets of (Lüscher-Weisz gauge) configurations; three quenched (Hyp-blocked links), two $N_f = 2$ dynamical (Stout links):

$L^3 \times T$	a [fm]	$M_{\pi,sea}$	link smear	N_{conf}	$\left(egin{smmatrix} l_1 l_2 & N_{sm,1} N_{sm,2} \ l_3 l_4 , \ N_{sm,3} N_{sm,4} , \ \kappa \end{pmatrix} ight)$
$12^3 \times 24$	0.20	∞	HYP	200	$\begin{pmatrix} 0 & 0 & 0 & 8 \\ 1 & 2 & 12 & 16 \end{pmatrix}$, 0.20)
$16^3 \times 32$	0.15	∞	HYP	100	$\begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 12 \\ 18 & 24 \end{pmatrix}, (0.20)$
$20^3 \times 40$	0.12	∞	HYP	100	$\left(\begin{smallmatrix} 0 & 0 \\ 1 & 2 \end{smallmatrix}, \begin{smallmatrix} 0 & 16 \\ 24 & 32 \end{smallmatrix}, \: 0.20\right)$
$12^3 \times 24$	0.115	500 MeV	Stout	74	$\begin{pmatrix} 0 & 0 & 0 & 8 \\ 1 & 2 & 12 & 16 \end{pmatrix}$, 0.20)
$16^3 \times 32$	0.16	450 MeV	Stout	100	$\begin{pmatrix} 0 & 0 & 0 & 12 \\ 1 & 2 & 18 & 24 \end{pmatrix}$, 0.20)

[6] C. B. Lang, P. Majumdar, & W. Ortner, Phys Rev D73, 034507

Quenched real	sults/Co	ntinuum extrap	olation
$3 \qquad \qquad$		$2.0 \qquad \qquad$	

Quenched baryon splittings/Dynamical results

Quenched baryon splittings (Continuum extrapolation):

Mass splittings Summary of mass differences (in MeV) and comparison to experimental results: $N_f = 0$ $N_f = 2$ difference experiment $a \to 0$ a = 0.156(3) fm $B_{1(2)}^{(*)} - B^{(*)}$ 423(13)(9) 446(17)(9)423(4) $B_{s1(2)}^{(*)}-B_{s}^{(*)}$ 400(8)(8) 417(10)(9)436(1) $\Lambda_b - B^{(*)}$ 415(23)(8) 358(55)(7) 306(2)

Dynamical results:

Experimental numbers (green crosses): [7] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 99, 172001 (2007) [8] T. Aaltonen *et al.* [CDF Collaboration], arXiv:0710.4199 [hep-ex]. V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 100, 082002 (2008) T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 99, 202001 (2007) [10] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 99, 052001 (2007) Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 99, 052002 (2007) [11] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006) and 2007 partial update for 2008

$\Sigma_{b}^{(*)} - B^{(*)}$	604(16)(12)	555(47)(11)	512(4)
$\Xi_b - B^{(*)}$	466(17)(10)	426(37)(9)	476(5)
$\Sigma_b^{(*)} - \Lambda_b$	200(27)(4)	195(72)(4)	206(4)
$\Xi_b - \Lambda_b$	95(17)(2)	111(37)(2)	170(5)

Summary of mass differences (in MeV) where no experimental results are known:

difference	$N_f = 0$	$N_f = 2$
	$a \rightarrow 0$	a = 0.156(3) fm
$B^{(*)'} - B^{(*)}$	612(31)(13)	674(66)(14)
$B_s^{(*)'} - B_s^{(*)}$	604(26)(12)	664(39)(13)
$B_{0,1}^* - B^{(*)}$	435(15)(9)	454(19)(9)
$B_{s0,1}^* - B_s^{(*)}$	412(10)(8)	421(12)(9)
$\Omega_b^{(*)} - B_s^{(*)}$	683(9)(14)	624(21)(13)
$\Omega_b^{(*)} - \Lambda_b$	340(23)(7)	342(55)(7)
$\Xi_b^{(\prime,*)} - \Lambda_b$	272(23)(6)	269(55)(5)
$\Xi_b^{(\prime,*)} - \Xi_b$	173(20)(4)	158(50)(3)

The strange quark mass m_s is set via the splitting $M_{1S_s} - M_{1S_{ud}} = 76.9$ MeV. The later value is obtained by the $1/M_{H^{(*)}} \rightarrow 0$ linear extrapolation of the experimental values $M_{B^{(*)}} - M_{B^{(*)}} =$ 86.8 MeV and $M_{D_*^{(*)}} - M_{D^{(*)}} = 103.5$ MeV. The second error estimate on quantities is due to the $\approx 2\%$ error we use for $r_0 = 0.49(1)$ fm.

Results for decay constants/kinetic corrections

Ratios of decay constants:

Conclusions / Outlook

Conclusion:

- Successfully isolated excited static-light mesons via variational method on a large number of lattices.
- Several excited states found: 2S, 3S, 1P, 2P, 1D.

- Good agreement with experiment for static-light mesons.
- Unexpected increase of $1P_+ 1S$ splittings towards chiral limit (due to static approximation?)
- Extraction of a number of baryon ground states.
- Large discrepancies for Λ_b most likely due to the static approximation \rightarrow Have to include kinetic corrections.
- Successful extraction of ratios of decay constants for ground and excited states.
- Include kinetic corrections as current insertion (preliminary results presented here)

Outlook:

- Splittings between Glueballino and R-Meson
- Heavy-light 4-quark operator (\rightarrow Bag parameter)
- 3-point functions in the light sector