Pion Scattering in Wilson Chiral Perturbation Theory

Sinya Aoki, Oliver Bär, Benedikt Biedermann

Abstract

We compute the $\pi \pi$ scattering amplitude in Wilson Chiral Perturbation Theory for two degenerate quark flavors. We consider two regimes where the quark mass m is of order (i) $a \Lambda_{\mathrm{QCD}}^{2}$ and (ii) $a^{2} \Lambda_{\mathrm{OCD}}^{3}$. Analytic expressions for the scattering lengths in all isospin channels are given. As a result of the $\mathrm{O}\left(a^{2}\right)$ terms the scattering lengths do not vanish in the chiral limit. Moreover, in regime (ii) additional chiral logarithms proportional to $a^{2} \ln M_{\pi}^{2}$ are present in the one-loop results. These contributions significantly modify the familiar result from continuum Chiral Perturbatio Theory.

Setup of the Lagrangian

As the leading order chiral Lagrangian we take (Euclidean space-time, $N_{f}=2$

$$
\mathcal{L}_{\mathrm{LO}}=\frac{f^{2}}{4}\left\langle\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}\right\rangle-\frac{f^{2}}{4} \hat{m}\left\langle\Sigma+\Sigma^{\dagger}\right\rangle+\frac{f^{2}}{16} c_{2} a^{2}\left\langle\Sigma+\Sigma^{\dagger}\right\rangle^{2},
$$

- $\Sigma=\exp (i \vec{\pi} \vec{\sigma} / f)$ includes the pion fields as usual, angled brackets denote traces in flavor space - The promotion of the c_{2} term to LO corresponds to a scenario for small enough quark masses where the $\mathrm{O}(m)$ and $\mathrm{O}\left(a^{2}\right)$ terms are of the same order of magnitude, i.e. $m \sim a^{2} \Lambda_{\mathrm{QCD}}^{3}$
- results for quark masses $m \sim a \Lambda_{\mathrm{QCD}}^{2}$ can be obtained by proper expansion

Significance of c_{2}
The sign of c_{2} determines the phase diagram [1], [2].

- $c_{2}>0$: - second order phase transition separating a phase where parity and flavor are sponaneously broken ("Aoki phase")
the charged pions are massless due to spontaneous breaking of the flavor symmetry
- $c_{2}<0$: - first order phase transition with a minimal non vanishing pion mass

Tree level Calculation
Pion mass
The tree level pion mass in this scenario reads

$$
M_{0}^{2}=2 B m-2 c_{2} a^{2}
$$

- or $c_{2}>0$ the pion mass vanishes at $m=c_{2} a^{2} / B$
- for even smaller values of m the charged pions remain massless, while the neutral pion becomes massive again
- for $c_{2}<0$ all three pions are massive for all quark masses and the pion mass assumes its minimal value at $m=0$, resulting in

$$
M_{0, \min }^{2}=2\left|c_{2}\right| a^{2}
$$

- c_{2} is difficult to measure numerically. In twisted mass lattice QCD the pion mass between the charged and the neutral pion is proportional to c_{2}
Scattering length
The scattering length is computed at tree level for the isospin channels $I=0,2$:

$$
a_{0}^{0}=\frac{7}{32 \pi f^{2}}\left(M_{0}^{2}-\frac{5}{7} 2 c_{2} a^{2}\right) \quad \text { and } \quad a_{0}^{2}=-\frac{1}{16 \pi f^{2}}\left(M_{0}^{2}+2 c_{2} a^{2}\right)
$$

- for $a=0$ the continuum tree level result with vanishing scattering lengths in the chiral limit is recovered
- for a non-zero lattice spacing the scattering lengths no longer vanish in the chiral limit
- the ratio a_{0}^{I} / M_{0}^{2} is no longer a constant but has the functional form

$$
\frac{a_{0}^{I}}{M_{0}^{2}}=\frac{A_{00}^{I}}{M_{0}^{2}}+A_{10}^{I}
$$

Determining c_{2}

- for $c_{2}>0$ pions can become massless and the ratio a_{0}^{I} / M_{π}^{2} diverges in the chiral limit
- for $c_{2}<0$ there is a minimal pion mass $M_{0, \text { min }}^{2}$ and, therefore, also the scattering length achieves a minimal value

$$
a_{0, \text { min }}^{0}=\frac{12}{32 \pi f^{2}} 2\left|c_{2}\right| a^{2}, \quad a_{0, \text { min }}^{2}=0 .
$$

Measurements of the scattering lengths will allow more precise determinations of c_{2}. In particula a_{0}^{2}, because it does not involve disconnected diagrams.

Sketch of the scattering lengths as a function of the pion mass at non-zero latticespacing. The left panel
shows $16 \pi \tau^{2} a_{a}^{2} a \operatorname{as}$ a function of the tree level pion mass M_{M}^{2}. For $c_{2}<0$ the pion mass cannot be smel shows $16 \pi f^{2} a_{0}^{2}$ as a function of the tree level pion mass M_{h}^{2}. For $c_{c}<0$ the pion mass cannot be smaller
than M_{M}^{2} in eq. (1). Nevertheless, extrapolating to the massless point the scatterina lensth assumes than M_{0}^{2}.,.min in eq. (1). Nevertheless, extrapolating to the massless point the scattering length assumes
the value $-2 c_{2} a^{2}$, as indicated by the dashed line. For $c_{2}>0$ the pion mass can be taken zero. At this mass the scattering lensth also assumes the value $-2 c_{2} a^{2}$, now with the opposite sign. The right pal

One loop computation

- The additional $\mathrm{O}\left(a^{2}\right)$ term at leading order contributes with new vertices proportional to $c_{2} a^{2}$ and one gets additional chiral logarithms proportional to $c_{2} a^{2}$ in the one loop computation. - modified power counting because of the $\mathrm{O}\left(a^{2}\right)$ term at LO:

$$
\begin{aligned}
\text { LO : } & p^{2}, m, a^{2} \\
\mathrm{NLO}: & p^{2} a, m a, a^{3} \\
\mathrm{NNLO}: & p^{4}, p^{2} m, m^{2}, p^{2} a^{2}, m a^{2}, a^{4}
\end{aligned}
$$

- the power counting scheme for the regime $m \sim a \Lambda_{Q \mathrm{CD}}^{2}$ is recovered by dropping the terms a^{3}, $a^{4}, m a^{2}, p^{2} a^{2}$ and treating $a^{2}, p^{2} a, m a, p^{4}$ and $p^{2} m$ at NLO
Pion mass to one loop

$$
\begin{aligned}
M_{\pi}^{2}= & M_{0}^{2}\left[1+\frac{1}{32 \pi^{2}} \frac{M_{0}^{2}}{f^{2}} \ln \left(\frac{M_{0}^{2}}{\Lambda_{3}^{2}}\right)+\frac{5}{32 \pi^{2}} \frac{2 c_{2} a^{2}}{f^{2}} \ln \left(\frac{M_{0}^{2}}{\Xi_{3}^{2}}\right)+k_{1} \frac{W_{0} a}{f^{2}}\right] \\
& +k_{3} \frac{2 c_{2} W_{0} a^{3}}{f^{2}}+k_{4} \frac{\left(2 c_{2} a^{2}\right)^{2}}{f^{2}} .
\end{aligned}
$$

- the Λ_{3} term is well known from continuum ChPT [3
- one additional chiral \log of order a^{2} which dilutes the continuum result and several terms analytic in the lattice spacing $\left(\Xi_{3}, k_{i}\right.$: unknown low-energy constants)

Scattering at one loop
due to the new interaction vertex proportional to $c_{2} a^{2}$ additional chiral logarithms

$$
a^{2} M_{\pi}^{2} \ln M_{\pi}^{2} \quad \text { and } \quad a^{4} \ln M_{\pi}^{2}
$$

are present in the scattering amplitude and consequently in the scattering lengths

Example: the a_{0}^{2} scattering length

$$
\begin{aligned}
a_{0}^{2}= & -\frac{M_{\pi}^{2}}{16 \pi f^{2}}\left(\kappa_{21}+\frac{M_{\pi}^{2}}{16 \pi^{2} f^{2}}\left\{\frac{7}{2} \ln \frac{M_{\pi}^{2}}{\mu^{2}}-\frac{4}{3} l_{\pi \pi}^{I=2}\right\}+\frac{2 c_{2} a^{2}}{16 \pi^{2} f^{2}}\left\{3 \ln \frac{M_{\pi}^{2}}{\mu^{2}}\right\}\right) \\
& -\frac{2 c_{2} a^{2}}{16 \pi f^{2}}\left(\kappa_{22}+\frac{2 c_{2} a^{2}}{16 \pi^{2} f^{2}}\left\{\frac{11}{2} \ln \frac{M_{\pi}^{2}}{\mu^{2}}\right\}\right)
\end{aligned}
$$

- nonvanishing scattering length in the chiral limit
- result from continuum ChPT is recovered for vanishing lattice spacing specific linear combination of Gasser-Leutwyler constants
- additional chiral logarithms proportional to $a^{2} M_{\pi}^{2} \ln M_{\pi}^{2}$ and $a^{4} \ln M^{2}$
- $\kappa_{2 i}$ denote analytic corrections in the lattice spacing - for fixed lattice spacing, they are constant and serve as fitting parameters
- a_{0}^{2} is given in terms of the one loop pion mass and not in terms of the tree level pion mass. \longrightarrow measurement of the scattering length at different pion masses and extrapolation to the physical pion mass or to the chiral limit
- similar results for the scattering lengths a_{0}^{0} and a_{1}^{1} (see [4])
- expansion yields the result for regime $m \sim a \Lambda_{\mathrm{OCD}}^{2}$ (see [4]

Fitting formula at one loop

- 5 unknown parameters in the scattering length: $f, l_{\pi \pi}^{I=2}, \kappa_{21}, \kappa_{22}$ and c_{2}.
- the ratio a_{0}^{I} / M_{π}^{2} has to one loop the functional form

$$
\frac{a_{0}^{I}}{M_{\pi}^{2}}=\frac{A_{00}}{M_{\pi}^{2}}+A_{10}+A_{20} M_{\pi}^{2}+A_{30} M_{\pi}^{2} \ln M_{\pi}^{2}+A_{40} \ln M_{\pi}^{2}+\tilde{A}_{40} \frac{\ln M_{\pi}^{2}}{M_{\pi}^{2}}
$$

- A_{40} and \tilde{A}_{40} are not independent
- 5 independent parameter instead of 2 at LO

Conclusion

The WChPT expressions for the scattering lenoths differ significantly from their continumm coun terparts.

- The $I=0$ and $I=2$ scattering lengths do not vanish in the chiral limit
- Additional chiral logarithms proportional to $c_{2} a^{2}$ appear.

Hence, fitting the continuum ChPT expressions to lattice data may lead to systematic errors in the chiral extrapolation and the determination of Gasser-Leutwyler coefficients. Using the expressions given here should improve the fit results.
Repeat the calculation for

- twisted mass QCD
- $2+1$ flavors

References

11 S. Sharpe and R. Singleton, Jr., Phys. Rev. D58 (1998) 074501
2] S. Aoki, Phys. Rev. D30 (1984) 2653
3] J. Gasser and H. Leutwyler, Ann. Phys. 158 (1984) 142.
[4] S. Aoki, O. Bär and B. Biedermann, arXiv:hep-lat/0806.4863
Acknowledgement
B. B. acknowledges financial support from the Cusanuswerk. This work is supported in part by the Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, CulSFB/TR9) .

