
Tuning HMC using Poisson Brackets
M. A. Clark 1, A. D. Kennedy2, and P. J. Silva2

We demonstrate how measurement of the average values of the contributions to the Poisson brackets{S, {S, T}}
and {T, {S, T}} allow us to optimize the integrators used for generating dynamical fermion configurations.
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Symplectic Integrators

We are interested in finding the classical trajectory in phase space of a system described by the
HamiltonianH(q, p) = T (p) + S(q) = 1

2
p2 + S(q). The idea of asymplectic integratoris to write

the evolution operator asexp
(

τ d
dt

)

= exp
(

τ
{

dp
dt

∂
∂p + dq

dt
∂
∂q

})

≡ eτĤ where thevector field

Ĥ = −
∂H

∂q

∂

∂p
+

∂H

∂p

∂

∂q
= −S′(q)

∂

∂p
+ T ′(p)

∂

∂q
≡ Ŝ + T̂ .

Since the kinetic energyT is a function only ofp and the potential energyS is a function only ofq

it follows that the action ofeτ Ŝ : f (q, p) 7→ f (q, p− τS′(q)) andeτ T̂ : f (q, p) 7→ f (q + τT ′(p), p)
are just translations of the appropriate variable.

We now make use of the Baker–Campbell–Hausdorff (BCH) formula, which tells us that the
product of exponentials in any associative algebra can be written asln(eA/2eBeA/2)− (A + B) =
1

24

{

[A, [A,B]] − 2[B, [A,B]]
}

+ · · · where all the terms on the right hand side are constructed out
of commutators ofA andB with known coefficients. We find that for a simple PQP symmetric
integrator with step sizeδτ the evolution operator for a trajectory of lengthτ may be written as

UPQP(δτ )τ/δτ =
(

e
1

2
δτŜeδτ T̂e

1

2
δτŜ
)τ/δτ

=
(

exp
[

(T̂ + Ŝ)δτ − 1
24

(

[Ŝ, [Ŝ, T̂ ]] + 2[T̂ , [Ŝ, T̂ ]]
)

δτ3 + O(δτ5)
])τ/δτ

= exp
[

τ
(

T̂ + Ŝ − 1
24

(

[Ŝ, [Ŝ, T̂ ]] + 2[T̂ , [Ŝ, T̂ ]]
)

δτ2 + O(δτ4)
)]

.

Shadow Hamiltonians

For every symplectic integrator there is ashadow HamiltonianH̃ that is exactly conserved; this
may be obtained by replacing the commutators[Ŝ, T̂ ] in the BCH expansion with thePoisson

bracket{S, T} ≡
∂S

∂p

∂T

∂q
−

∂S

∂q

∂T

∂p
[1]. For example, the integrator above exactly conserves the

shadow HamiltonianH̃ ≡ T + S − 1

24

(

{S, {S, T}} + 2{T, {S, T}}
)

δτ2 + O(δτ4). We now
make the simple observation that all symplectic integrators are constructed from the same Pois-
son brackets, and that these Poisson brackets are extensivequantities. We therefore measure the
average values of the Poisson brackets〈{S, {S, T}}〉 and〈{T, {S, T}}〉 over a few equilibrated
trajectories at the parameters of interest and then optimize the integrator (by adjusting the step
sizes, order of the integration scheme, integrator parameters, number of pseudofermion fields,
etc. [2, 3]) offline so as to minimize the cost. This is possible because the acceptance rate and
instabilities are completely determined by∆H = H̃ − H.

As a very simple example consider the minimum norm PQPQP integrator UPQPQP(δτ )τ/dt =
(

eαŜδτe
1

2
T̂ δτe(1−2α)Ŝδτe

1

2
T̂ δτeαŜδτ

)τ/dt
whose shadow Hamiltonian is

H̃ = H +

(

6α2 − 6α + 1

12
{S, {S, T}} +

1 − 6α

24
{T, {S, T}}

)

δτ2 + O(δτ4).

One way of optimizing this integrator is to minimize|〈∆H〉| with respect toα, the average being
taken with respect to the equilibrium distributione−H ; this makesH as close to the conserved̃H
as possible. Another option is to minimize the quantity

∣

∣〈δH〉
∣

∣ =
∣

∣

〈

∆H ′ − ∆H
〉∣

∣ where the∆H ′

is the value of∆H at the end of a trajectory (before the Metropolis test); thisis probably closer
to minimizing the computational cost. In practice we make use of the fact that in equilibrium
〈δH〉 = 1

2〈δH
2〉 + · · · and choose to minimize〈δH2〉, as this is more stable numerically.

Gauge Fields

We must construct the Poisson brackets for gauge fields, where the field variables are constrained
to live on a group manifold: to do this we need to use some differential geometry. The following
table summarizes the difference between the formulation onflat space that we have discussed up
to this point and that on general manifolds.

Flat Manifold General

Symplectic 2-form dp ∧ dq ω : dω = 0

Hamiltonian vector field Ĥ = ∂H
∂p

∂
∂q −

∂H
∂q

∂
∂p dH = i

Ĥ
ω

Equations of motion q̇ = ∂H
∂p , ṗ = −∂H

∂q
d
dt

∣

∣

∣

σ
= Ĥ

Poisson bracket {A,B} = ∂A
∂p

∂B
∂q − ∂A

∂q
∂B
∂p {A,B} = −ω(Â, B̂)

In order to construct a Hamiltonian system on a manifold we need not only a Hamiltonian func-
tion but also a fundamental closed 2-formω. On a Lie group manifold this is most easily found
using the globally definedMaurer–Cartanformsθi that are dual to the generators and satisfy the
relationdθi = −1

2
cijkθ

j ∧ θk, wherecijk are the structure constants of the group. We choose to

defineω ≡ −d
∑

i θ
ipi =

∑

i(θ
i ∧ dpi − pidθi) =

∑

i(θ
i ∧ dpi + 1

2
picijkθ

j ∧ θk). Using this

fundamental 2-form we can define a Hamiltonian vector fieldÂ corresponding to any 0-formA
through the relationdA = i

Â
ω or equivalentlydA(x) = ω(Â,x) ∀x. The classical trajectories

σt = (Qt, Pt) are then the integral curves of this vector field,σ̇t = Â(σt).

Poisson Brackets

For a Hamiltonian of the formH = S + T we find that the leading Poisson brackets that appear
in the shadow Hamiltonian for a symmetric symplectic integrator are{S, {S, T}} = ei(S)ei(S)
and{T, {S, T}} = −pipjeiej(S) where thepi are the momentum coordinates and theei are linear
differential operators satisfyingei(U) = TiU for gauge fieldsU ∈ SU(n) with generatorsTi.

Consider the Wilson pseudofermionic actionS = φ†M−1φ, thusei(S) = −φ†M−1ei(M)
M−1φ, and pipjeiej(S) = pipjφ†M−1

(

2 ei(M)M−1ej(M) − eiej(M)
)

M−1φ. ei(M) is
straightforward to evaluate given the linearity of the Wilson–Dirac operator in the gauge field:
we just use Leibniz rule and then replace the gauge fieldU by PU .

Nested Integrators

If it is much cheaper to evaluate the force for one part of the action, such as the pure gauge part,
we can use a nested integrator with a very small step size for the “inner” cheap part. One might
expect that one could then tune the “outer” part without reference to the cheap part, but this is not
the case.

Let the Hamiltonian beH = π
2
2 + S1 + S2 with ‖S2‖ ≪ ‖S1‖ and consider a nested integrator

with a composite step of the formU(δτ ) = exp Ŝ2δτ
2

(

exp Ŝ1δτ
2m exp T̂ δτ

m exp Ŝ1δτ
2m

)m
exp Ŝ2δτ

2 . For

the inner integrator the BCH formula tell us that
(

exp Ŝ1δτ
2m exp T̂ δτ

m exp Ŝ1δτ
2m

)m
may be written as

exp

[

(Ŝ1 + T̂ )δτ +
(

α[Ŝ1, [Ŝ1, T̂ ]] + β[T̂ , [Ŝ1, T̂ ]]
) δτ3

m2
+ O(δτ5)

]

with α = − 1
24 andβ = 1

12. Applying the BCH formula again leads to the shadow Hamiltonian

H̃ = H +

(

α{Ŝ2, {Ŝ2, T̂}} + β{Ŝ1, {Ŝ2, T̂}} + β{T̂ , {Ŝ2, T̂}}

+
1

m2

(

α{Ŝ1, {Ŝ1, T̂}} + β{T̂ , {Ŝ1, T̂}}
)

)

δτ2 + O(δτ4).

Observe that the Poisson bracket{Ŝ1, {Ŝ2, T̂}} depends on the cheap actionS1 but is not su-
pressed by any inverse power ofm; it is therefore necessary to measure this quantity in orderto
optimize the integrator.

Results

The blue curve in the first figure following shows howlog10 |δH| behaves as a function of MD
time, compared with the red curvelog10 |δH̃| for the shadow Hamiltonian up to leading non-
trivial order in δτ . This demonstrates that once the system has reached equilibrium the shadow
Hamiltonian is indeed conserved.
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The second graph shows how several different Poisson brackets and their fluctuations depend on
the lattice size. As expected the Poisson brackets are more-or-less extensive (they grow asL4); the
statistical fluctutations in the Poisson brackets are also shown, and they fall asL−2 as expected.

The first graph below shows how we tune the PQPQP integrator.
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The orange curve shows the value of|〈∆H〉| as a function of the free parameterα on a logarith-
mic scale. This quantity reaches its minimum nearα = 0.25, whereas the minimum of〈δH2〉
(red curve) occurs forα = 0.179, which agrees well with the measured values of this quantity
(blue). Note that the red curve is computed from Poisson bracket values measured at the single
valueα = 0.24. The fact that the phase space distribution at the end of trajectories depends onα
probably accounts for the discrepancy between the blue and red curves for the values ofα where
the acceptance rate is essentially zero.

The second graph shows similar results for tuning the parameters for a dynamical fermion com-
putation on a84 lattice with a Wilson gauge action withβ = 5.6 and Wilson fermions with
κ = 0.1575. We used a two level PQPQP integrator with two gauge steps perfermion step, and a
trajectory length of one. The yellow point shows values of theα parameters at which the Poisson
brackets were measured.
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