Tuning HMC using Poisson Brackets
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We demonstrate how measurement of the average values of thergributions to the Poisson brackets{ S, {S,T'}}
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and {7, {S,T}} allow us to optimize the integrators used for generating dyamical fermion configurations.

Theory

Symplectic Integrators

We are interested Iin finding the classical trajectory in plsgsace of a system described by the
HamiltonianH (¢, p) = T'(p) + S(q) = p? + S(q). The idea of aymplectic integratois to write

the evolution operator asp (T%) = exp (7’ {nga&p + flggq}) — ¢7H \yhere thevector field
. OH O O0HOJ 0 0 .
H=—— 4 ——=-S5(q=—+Tp)=—=5+T

Since the kinetic enerdy is a function only ofp and the potential energyis a function only of;

it follows that the action of™ : f(q,p) — f(q,p—75'(¢)) ande™ : f(q.p) — flg+7T'(p),p)
are just translations of the appropriate variable.

We now make use of the Baker—Campbell-Hausdorff (BCH) fdamwhich tells us that the
product of exponentials in any associative algebra can HEBWIaSln(eA/ 2eBeA/ )= (A+B) =

24
of commutators ofA and B with known coefficients. We find that for a simple PQP symnaetri

Integrator with step sizeér the evolution operator for a trajectory of lengtimay be written as
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Shadow Hamiltonians

For every symplectic integrator there iskadow Hamiltoniarff that is exactly conserved:; this

may be obtained by replacing the commutatkﬁ‘sf] In the BCH expansion with thoisson
0SoT  950T

bracket{S, T} = —
dp dq  0q Op
shadow Hamiltoniand = T + S — L ({S,{S,T}} +2{T,{S,T}}) 7% + O(67%). We now
make the simple observation that all symplectic integeére constructed from the same Pois-
son brackets, and that these Poisson brackets are exteunsingties. \We therefore measure the
average values of the Poisson brackgts, {S,7}}) and{({T,{S,T}}) over a few equilibrated
trajectories at the parameters of interest and then opitme integrator (by adjusting the step
sizes, order of the integration scheme, integrator pamnmsiehumber of pseudofermion fields,
etc. [2, 3]) offline so as to minimize the cost. This is possibécause the acceptance rate ang
instabilities are completely determined by = H — H.

As a very simple example consider the minimum norm PQPQRyrater UPQPQF(M)T/‘” —

i o 7o acor T/ T
(eaS(STe%T(STe(l_20‘>5576%T5Teo‘557) whose shadow Hamiltonian is

) (6042604+1

[1]. For example, the integrator above exactly conserves th

1 — ba
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H=H+ ———{S{S. T} + {T.{S, T}}) 02 + O(67Y).

One way of optimizing this integrator is to minimize\ H )| with respect tax, the average being
taken with respect to the equilibrium distributien’ ; this makesH as close to the conservéf
as possible. Another option is to minimize the quant{tyd)| = |(AH' — AH )| where theAH’
IS the value ofA H at the end of a trajectory (before the Metropolis test); higrobably closer
to minimizing the computational cost. In practice we make agthe fact that in equilibrium

(0H) = %(6[{2) + --- and choose to minimiz& H?), as this is more stable numerically.

Gauge Fields

We must construct the Poisson brackets for gauge fields etheffield variables are constrained
to live on a group manifold: to do this we need to use someraiffeal geometry. The following
table summarizes the difference between the formulatiofiabspace that we have discussed up
to this point and that on general manifolds.

L{[A,[A, B]] — 2[B,[A, B]]} + - - - where all the terms on the right hand side are constructed oyt

Flat Manifold General

Symplectic 2-form dp N dq w:dw =70

Hamiltonian vector field H = %ggq - %Z[(% dH =i 7w

Equations of motion | ¢ = %—g,p — —%—Z[ i = H
Poisson bracket |{A, B} = %;‘%g - %3%? {A, B} = —w(A, B)

In order to construct a Hamiltonian system on a manifold wedn®ot only a Hamiltonian func-
tion but also a fundamental closed 2-fowm On a Lie group manifold this is most easily found
using the globally defineaurer—Cartanforms6’ that are dual to the generators and satisfy the

relationdg’ = —1 ;.k@j N wherecé.k are the structure constants of the group. We choose tp

definew = —d >, 0'p' = S_.(0" A dp' — ptdh) = (6 A CAlpi + 1p'ch 07 A 9%). Using this
fundamental 2-form we can define a Hamiltonian vector fikldorresponding to any O-for

through the relatioWA = i ;w or equivalentlydA(z) = w(A, z) V. The classical trajectories

ot = (Q¢, P;) are then the integral curves of this vector fietd = A(at).

Poisson Brackets

For a Hamiltonian of the fornlf = S 4+ 1" we find that the leading Poisson brackets that appeay

in the shadow Hamiltonian for a symmetric symplectic ingegr are{.S, {S,T}} = ¢e;(.5)e;(S)
and{7,{S,T}} = —pipjeiej(S) where they’ are the momentum coordinates anddhare linear
differential operators satisfying(U) = T;U for gauge fieldd/ € SU(n) with generatorg’;.

Consider the Wilson pseudofermionic actiSh= ¢! M~1¢, thuse;(S) = —pf M~ le;(M)
M1, andpipjeiej(S) = plplpt M™! (2 ei(/\/l)./\/l_lej(./\/l) — ejej(M)) M=o, e;(M) is
straightforward to evaluate given the linearity of the \WWiisDirac operator in the gauge field:
we just use Leibniz rule and then replace the gauge tiehy PU.

Nested Integrators

If it IS much cheaper to evaluate the force for one part of tt®a, such as the pure gauge part,
we can use a nested integrator with a very small step sizééofinner’” cheap part. One might
expect that one could then tune the “outer” part withoutnexiee to the cheap part, but this is not
the case.

Let the Hamiltonian bed = %2 + 51+ S9 with [|.5;|| < ||.S1]| and consider a nested integrator

with a composite step of the forfi(67) = exp 52757 (exp %1—7fj exp TW(ST exp %fj) exp 32257. For

A A A m
the inner integrator the BCH formula tell us tf(&kp 521%7 exp TWCST exp 5217%7) may be written as

. . A A . N0
exp | (S1+ 1)o7 + (04[51, 51, T+ B[T, [51,T]]> i O(67°)

with o = —-; and 8 = 5. Applying the BCH formula again leads to the shadow Hamiéan

~

H=H + <a{§2, {8, T} + {51, {52, T} + B{T, {5, T}}
s (a(81 81 T)) + BT {51, T)}) )+ Of6)

Observe that the Poisson bracKet;, { S, 7} } depends on the cheap actiSh but is not su-
pressed by any inverse powermaf it is therefore necessary to measure this quantity in daler
optimize the integrator.

Results

The blue curve in the first figure following shows haw, |0 H| behaves as a function of MD
time, compared with the red cunteg;, |§H| for the shadow Hamiltonian up to leading non-
trivial order ino7. This demonstrates that once the system has reached egmlithe shadow
Hamiltonian is indeed conserved.
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MD time

The second graph shows how several different Poisson ldeaghkd their fluctuations depend on
the lattice size. As expected the Poisson brackets are ardess extensive (they grow &8); the
statistical fluctutations in the Poisson brackets are dlsog, and they fall ag 2 as expected.

The first graph below shows how we tune the PQPQP integrator.
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The orange curve shows the value/@k /)| as a function of the free parameteion a logarith-
mic scale. This quantity reaches its minimum nea# 0.25, whereas the minimum aof H?)

(red curve) occurs forv = 0.179, which agrees well with the measured values of this quantity
(blue). Note that the red curve is computed from Poissonkietatalues measured at the single
valuea = 0.24. The fact that the phase space distribution at the end @&fctiajies depends an
probably accounts for the discrepancy between the blueethdurves for the values of where

the acceptance rate is essentially zero.

The second graph shows similar results for tuning the paeér a dynamical fermion com-
putation on a3 lattice with a Wilson gauge action with = 5.6 and Wilson fermions with
x = 0.1575. We used a two level PQPQP integrator with two gauge stepfeparon step, and a
trajectory length of one. The yellow point shows values efdiparameters at which the Poisson
brackets were measured.
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