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NO! NOT YET QCD!!




that is exciting aboit physics is that
not only Chat Chere is a guantitalive Cheory
o wnderstand a phenoriena
but that there are at least a handfed/
of” different approaches
Zo solve the z‘/zeory
and each approach
leacfles you s OMeZ‘/w‘ng neew and 1nteresting




Summary

Research over the past decade suggests that
there exists a new computational approach
to solve well known lattice field theories
which includes
models with chemical potential,
models with massless fermions,
models with gauge fields.

The potential of the method
remains largely unexplored.




Outline

% Basic Ideas: A Simple Example
= XY model + Chemical Potential
= CPN-1 model
* Bosons as Fermionic Composites
= XY model
= A model of pions in Nr=2 QCD [ SU(2)xSU(2)xU(1) model ]
% Massless Thirring Model (any dimension)
= A new fermion algorithm
% (Gauge Theories (?)
* Conclusions




XY Model + Chemical Potential

In the conventional approach the action is

S = _/‘E Z { exXp (I[O:r - (r"l)x+a-] + ,“'()a-,t) + exp ( — 1 [(.D:r - @:L'-}-a'] - ,U'()a',t) }
action is complex!
A complex action is a generic feature
of many field theories

in the presence of a chemical potential
in the conventional formulation




Solution: World-Line Representation

/[d@] exp [ {— exp (z[ob Drtal + ,uda,t) + g exp ( —i[¢r — Pryal — #50;) }]

High temperature expansion ‘
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constraint
particle number conservation

World-line representation: no sign problem




XY-Model world-line configuration

(Example)
—@ o
Y
—Q [
Each world line configuration ! .
is defined by a set of -
constrained integers on bonds

[k xo] ——
IR .




Can we solve models
in the World-Line Approach?

e Have to deal with constraints
e | ocal algorithms may not be
- ergodic
- efficient
e (Correlation functions may be non-diagonal

- involve introducing defects (Off-diagonal Observables)




The Worm (directed path) Algorithm

Prokof’ev and Svistunov, PRL 87, 160601 (2001)
Syljuasen and Sandvik, PRE66, 046701 (2002)
Adams and Chandrasekharan, NPB662, 220 (2003)

The basic idea of an update
Create a pair of defects and propagate them
Update ends when the defects meet and can be removed
Motion of defects satisfies detailed balance

Complete update is non-local
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Performance

e As efficient as the conventional cluster algorithms
e But, more flexible with addition of couplings

e Applicable to more models

Disc/ @ mer
OF cowurse the wworld-/ine cgpproac/’/ ”May/ not be
efFicient for all proé/emé




CPN-1 models: World-line representation

! uT
zta =1,2,..,N

/H[d~z] eXp 13 Z
>, =1

l High Temperature Expansion
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Apparent difficulties of the world-line approach!

Difficult to write in closed form
&
The resulting models difficult to code

l

1s CAere a S/MP/ er way?




The D-theory Approach

U.-J. Wiese, Lattice 1998

e Formulate field theories using Dimensional reduction of
Discrete variables

e Past formulations begin with the Hamiltonian
- World-line representations are natural

- CPN1models formulated and solved recently.
Comput. phys. comm. 175: 629-634 (2006).

- Sometimes encounter new sign problems
e Now can formulate directly in Lagrangian approach!
- use Grassmann variables

- more flexible, easier and new ways to deal with GV!




Bosons as Composite Fermions

A Fermionic XY Model in d-dimensions (Strongly Coupled QED)

S =— E "lﬁ"‘;r’lﬁ’;r"l.i'--’I+.z' :l%'{”‘;v+zf —-T E lr‘l l".l‘lr‘ I_f_t"l#{”‘r-i-t

ra=1,2...d I

exact global U(1) symmetry:

W, — %) and Y, — e’c’rg-‘dfr where o, 1s +1 on even sites and —1 on odd sites

World-line representations e e
arise naturally!
four-fermion terms I I
makes the problem easy! I = 1
I —J__
eXp(l"'r'ui";v"l*':i"’l*'ut";t-l-ﬁl':z""‘;"'f 'f‘IJ-) =1 + ("‘T"l-‘"f";r 'uf"‘;lf "l*:i"‘;r-i-#-"d'?‘l' tu —— — — I
I I I I
Dimer models of Rossi and Wolff, 1 984!




a/gor/‘z(/}m for tHs proé/em o

Pions with Quarks

An SU(2) x SU(2) x U(1) model of composite fermions

Action S=— > TS Syl —T Y Ti[Ss Sope] —c Yy detE,

re=12...d T
c*0

_ Anomal
U, . U, U,  Upd, nomatly
i (ﬂ_l dr ) — _
d, d,w, d.d,

Symmetry

Z;E — L.E;ERTei(b for X even

Y, — RY,L'e™™ for x odd

No comentdiona cluwuster . @\




Effects of the Anomaly

in two flavor QCD phase transition
Chandrasekharan & Mehta PRL99, 142004 (2007)

Temperature

Anomaly Strength

second order
O(4) critical behavior

tricritical point
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Strong-Coupling QCD +

Originally proposed by Karsch &
Mutter (local algorithm).

Sign problem remains unsolved,
but milder.

Fromm & Forcrand use a worm
algorithm.

Talk by Fromm
- Wednesday 2:30pm

- Non-zero temp. and density

Local Metropolis step, 4%2 at o mq =0.01
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Massless Thirring Model

Action S =- Z 77/_4.(3: )zr ['l.ﬁ'j"w—i-u. - Z“.L‘—,u] - U$1L'I;I+#L'I+y

T,
Exact U(1) chiral symmetry:

zax 1007,

U, — 1, and a — e'7*%1)_where o, 1s +1 on even sites and —1 on odd sites

In d>3 the model contains a chiral phase transition
U < U. massless fermions; U > U, massless pions

Physics connected to QED, graphene,...

Hands & Strouthos, arXiv:0806.4877
Christofi, Hands & Strouthos, PRD75, 101701 (2007)

Mass/less /linrntd /s aéad//y diFfFice/t




World-Line Approach
Z = / [depdr))] exp (Z {nu(:z:)gx [Vrgp — Yoy] + U, 00, . y})

T,

exp(Ut,Vuthpyy Votp) = 1+ U thutpy  Vrgp

z=Y" (H L*"’L“)Detﬁvvvf[n]

ng u=0,1 T T

fermions are free inside /
certain regions ——

“Bag Model” ﬁ"- B — —
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Features of the algorithm

e (learly slower than a bosonic problem
- each step involve inverting a matrix.
e But efficient for large U
- Matrix expected to be local and small
e Massless fermions not a problem!

- zero modes if present can be tackled.

Koor for /‘Mprox/emenfé !




World-Sheet Algorithm for gauge theories?

¢ |n principle this should be possible
- rewrite the model as a model of surface
¢ Abelian gauge theories good place to start
- easy to write the surface representation

- In the confined phase even a local algorithm
works well.

- In the coulomb phase best way to update
the surfaces is still unclear.




Wilson Loop in Abelian Gauge Theory
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Summary

Research over the past decade suggests that
there exists a new computational approach
to solve well known lattice field theories
which includes
models with chemical potential,
models with massless fermions,
models with gauge fields.

The potential of the method
remains largely unexplored.




