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1. Plan of My Talk
2. Machine trends

New machines
BG/P, T2K, QPACE project, Pet-Ape project.

Many cores
GPGPU CUDA

3. Algorithmic developments for dynamical QCD (Wilson type)
HMC with

Preconditioning for HMC action and UV/IR separation: 
Domain-Decomposition,RHMC, Schur complement…
Multiple timescale MD integrator 

Solver with
Inner-Outer(mixed prec.), Deflation, Adoptive Multi Grid.

4. Outlook: Physics at 1Pflops
Finer lattice  (continuum limit or charm quark)
Larger volume (multi hadron system)

I apologize to everyone if whose work is not properly cited.
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2. Machine Trends

New machines
Blue Gene/P  

Successor of  QCDSP, QCDOC, Blue Gene/L 
[P.Boyle et al., IBM J. Res. and Dev. 49 (2005)               

http://www.research.ibm.com/journal/rd/492/boyle.html]
4Way SMP PowePC@0.85GHz
Scalable 3D torus network
Population is incleasing
Thin node / O(100,000) Many nodes 
Byte/Flop balanced
Fine grained parallelization.
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2. Machine Trends (cont’d)

New machines
T2K open super computer project

(Tsukuba-Tokyo-Kyoto)
[http://www.open-supercomputer.org/]

4 Way Opteron (Barcelona) node cluster (commodity base).
648nodes@tsukuba,  147GFlops/node (Fat node)
Quad core, 4 way
Multi-rail fat tree network
Many core / Fat node / O(1,000) few nodes
Maintain Byte/Flop at each level
Data Blocking is required



5

2. Machine Trends (cont’d)
New machines (for QCD)

QPACE project (QCD PArallel computing on the CEll/B.E.)
2008-2009    [Poster by A. Nobile “Status of the QPACE Project”]

Fund by Deuche Forschungsgemeinscaft (DFG)
Collaboration with IBM Germany. 
Dedicated for LQCD.      200TFlops (2009)  
Cell Broadband Engine cluster. [PowerXCell 8i,  102GFlops(DP)] 

Custom 3D torus Scalable network (FPGA)
Low power consumption 1.5W/GFlops
Many core / Fat node / O(1,000) Few nodes 
Maintain Byte/Flop at each level
Data Blocking is required

QCD  with CELL: Spary,Hill,Trew hep-lat/0804.3654; 
S.Motoki & A. Nakamura Lat2007;

F.Belletti et al. LAT2007
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2. Machine Trends (cont’d)
New machines

Pet-APE project (Petaflops Array Processor Experiment)

[INFN APE Groupe, Italy, to apper in NUOVO CHIMENTO]

Successor of APEmille, apeNEXT.
Reference computing platform for LQCD (2009-2014)
Custom  CPU:  Apotto
Custom Network ApeNet+ 3D Torus. 
Aiming for good price/performance.
Thin node / O(100,000) Many nodes ?

EMAIL From Davide Rossetti@ROMA1.INFN
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2. Machine Trends (cont’d)

Many cores (QPACE, T2K)
To make use of the full machinery of many 

transistors on a chip, many core architecture is 
employed for recent processor

Intel: Core 2 Quad (4cores, 3GHz,  48GFlops),…
AMD: Phenom (4cores, 2.4GHz, 38GFlops), …
IBM: Power X Cell 8i (1+8cores, 3.2GHz, 
102GFlops)
SUN: UltraSparc T2 (8cores)

The trend is 8 cores, 16 cores,…., many 
cores
Intel larrabee 80 cores?
AMD/ATI GPGPU firestrem 800 cores?
NVIDIA GPGPU CUDA  240 cores?
As a many core example , GPGPU
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2. Machine Trends (cont’d)
GPGPU

“Lattice QCD as a video game”,
G.I.Egri, Z.Fodor, S.D.Katz, D.Nogradi, 

K.K.Szabo, hep-lat/0611022.
NVIDIA G80 arch.  > 300 GFlops(SP)
Lattice Wilson kernel   > 30 GFlops
Difficult to program using Graphic API  

(OpenGL)

NVIDIA provides HPC GPGPU language
CUDA (a C/C++ simple extension)
Easy to learn, but requires hardware/memory model knowledge

My experience with CUDA (GeForce 8800 GTX)
[NO WARRANTY CUDA code:http://theo.phys.sci.hiroshima-

u.ac.jp/~ishikawa/CUDA/CudaQCDSolver_0.06.tar.gz]
Hopping matrix mult (16^4) can also achieve > 40 GFlops.

30GFlops

[Poster by C. Rebbi, “Blastign Through Lattice Calc. using CUDA”
talk by F. Di Renzo, “GPU computing for 2-d spin systems:CUDA vs OpenGL”]

C. Rebbi (Poster): 
Wilson Dirac 62GFlops! 
with Nvidia Tesla C870
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2. Machine Trends (cont’d)
My experience with CUDA (GeForce 8800 GTX)

Cuda code example:
Link variable times 2-Spinor code
almost C language

∑
=
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2. Machine Trends (cont’d)
My experience with CUDA (GeForce 8800 GTX)

CUDA Programming model
Single Program Multiple Data (SPMD)
Nested threading.         Grid  /  Block  /  Thread
Thread ID + Block ID (Corresponds to MPI RANK)
Block has local memory shared by threads in a block.

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
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Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
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Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)
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Thread
(3, 0)

Thread
(4, 0)

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
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Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block
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Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)
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(0, 0)
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Thread
(3, 0)

Thread
(4, 0)

Block (1, 1)

Thread
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Thread
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Thread
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Thread
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(4, 2)
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(0, 0)
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(4, 0)
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(0, 1)

Thread
(1, 1)

Thread
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Thread
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Thread
(4, 1)
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Thread
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(2, 1)

Thread
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Thread
(4, 1)

Thread
(0, 2)

Thread
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Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
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Thread
(1, 2)

Thread
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Thread
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(4, 2)
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(0, 0)
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(1, 0)
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(2, 0)
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(3, 0)
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(4, 0)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)Grid for 16^3x32 lattice

Block for 4^3x2 lattice

Thread for single site

Spinor data are vector loaded [100GByte/sec] 
on the shared memory on each block. They are 
reused by (max 8 times/ min 4 times).

Link fields are loaded via Texture Fetching 
mechanism (Cached).
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2. Machine Trends (cont’d)
My experience with CUDA (GeForce 8800 GTX)

CUDA Language is Ready for Lattice QCD!!!

A test result with CUDA solver (Single precision)

See also CUDA Works in This conference:
F. Di Renzo, ”GPU computing for 2-d spin sytems:CUDA vs OpenGL”
C. Rebbi, ”Blasting Through Lattice Calculations using CUDA”

CELL Works:
V. Kindratenko, ”Cell processor implementation of a MILC lattice QCD application”

CELL has similar feature?

How about other accelerator? 
(AMD/ATI card, ClearSpeed) 
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2. Machine Trends (cont’d)
GPGPU
This year Nvidia and AMD/ATI provide DP enabled architecture

NVIDIA  GT200 (Tesla 10series)
240 SP (SP cores), 30 DP cores
～1,000(or 600)Glops(SP), ～90GFlops(DP)

AMD/ATI  RV770 (Firestream 9250)
640 SP units, (160 DP units?)
1.2TFlops (SP), 200 GFlops (DP)
AMD Stream SDK

For QCD
No ECC,  check the result on the host side.
O(1000) thread programming/SIMD programming is required. (1site=1thread)
Make use of the Local memories attached each core for good efficiency.
Host device communication is limited by PCI-E x16 G2 speed                         
(8GB/sec (sustained at 2GB/sec))

C. Rebbi (Poster): Wilson Dirac 100 
GFlops! with Nvidia GTX280
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2. Machine Trends (cont’d)
Thin node / O(100,000) nodes (BG/P , Pet-APE)

Uniform Fine Grained Parallelization is required.
10GFlops/CPU, 100,000 nodes = 1PF

Many cores /  Fat node / O(1,000) nodes (T2K, QPACE, GPGPU)
Core/CPU/Node  Hierarchy exists.
Data Bandwidth is not uniform.
Data blocking is required at each level. 

1～10 PFlops machine trends?
My expectation is Many core/Fat node/O(1,000-10,000) nodes
Near future: Intel larrabee, CELL,  GPGPU, …..

200 GFlops/CPU ,  8 CPU/node=1.6TF/node,  1,000 
node=1.6PFlops 
1 TFlops/CPU, 4 CPU/node = 4TF/node, 1,000 node= 4PF
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3. Algorithmic developments for dynamical QCD
Recent improvement strategy (HMC)

Two key technologies for HMC algorithm
(1)  Transform/split  det[D]  using preconditioner (Action Prec.)

Reduction of condition number of D 
remove/suppress UV modes of D

]det[
]det[]det[

]det[  compute easy to  and   )(cond)(cond    s.t.    choose
oner     preconditi a:     op., Dirac Lattice :

P
DPD

PDDP P
PD

=

<

physics part/UV       UVoner      Preconditi  :
physics part/IR IR    op. onedPreconditi :

P
DP

UV/IR separation [de Forcrand, Takaishi, NPB(Proc.Suppl.)53,Lat96]

∫∏∫∏ −−− == ][1][ ]det[]det[]det[ USUS ePDPdUeDdUZ
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3. Algorithmic developments…(cont’d)

Recent improvement strategy (HMC)
(2) Multi time step MD integrator

HMC partition function

2
1

211 )(
2211

1]det[]det[ ΦΦ−ΦΦ−++− −++

∫ ΦΦΦΦ= DPPeddddPDP

],[],[][][
2
1

2211 Φ+Φ++ΠΠ= USUSUSTrH gµµ

Multi time step MD integ. [Sexton-Weingarten, NPB 380(92)]

∫ ΦΦ−++ ΦΦΦΦ= ],,,[
2211

21UPHedddDUDPdZ

µµµµ
µ

µµ
µ

ττ 21     , qqg FFFF
d

d
Ui

d
dU

++==
Π

Π=

IR modeUV mode

|||||||||||| 21 µµµ qqg FFF >>

Drive with (B)

Drive with (C)

Drive with (A) step  timeMD : τ
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3. Algorithmic developments…(cont’d)

(1) Transform/split  det[D] using preconditioner (Action Prec.)

(A) Hasenbusch’s heavy mass preconditioner

(B) Geometric preconditioner (Domain Decomposition)

ILU preconditing
Point / stripe blocking for MG solver, Overlap kernel

]'det[]'/det[]det[ DDDD = 1'/ and  , than masshaevy  has ' ≈DDDD

IR mode UV mode

]ˆdet[]det[]det[

]1det[]det[]det[
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1
det

0
0
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⎠
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⎛
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UV mode IR mode

[Lüscher , JHEP 0305 ‘03,CPC 165 ’05]

[M. Peardon, hep-lat/0011080]

[A. Boriçi, hep-lat/0704.2341; LAT2007]

eeD̂ : Schur complement of D

det[
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3. Algorithmic developments…(cont’d)

(1) Transform/split  det[D] using preconditioner (Action Prec.)

(C) n-th root trick  and Rational approximation RHMC

( )nnMMDD ]det[]det[]det[ /1==†

[M.Clark, Ph. de Forcrand, A. Kennedy,LAT2005;
M. Clark, A.Kennedy, PRL98(2007), PRD75(2007)]

∑
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UV mode:large βshift.
Large MD Force, small cost

IR mode:  small βshift.
Small MD Force, expensive cost

Partial fraction form

Distinctive feature: Implicit scale splitting by Rational Approx.
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3. Algorithmic developments…(cont’d)

(2) MD integrator improvements
Omelyan integrator

Omelyan et al. minimize

50% improvement is observed for QCD  (Takaishi & de Forcrand)

{ }{ } { }{ }( ) ( )42,,,, tOtVTVVTTHH δδβα +++=′

[Takaishi & de Forcrand,PRE73(2006); 
Omelyan, Mryglod & Folk,CPC151(2003)]
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3. Algorithmic developments…(cont’d)

(2) MD integrator improvements
Extension to Multiple time step integrator for Omelyan

Nesting the Kernel (QPQPQ),  K-time scale (depth K)

Recursively defined.

Optimize / Customize your MD integrator
Shadow Hamiltonian contains errors expressed with Poisson 
brackets.
Offline measurement of Poisson brackets;                        
exp. val.  ＜{A,{B,{….}}}＞
Minimize the errors by tuning integration parameter,λ, number of 
time scale, number of pseudo-fermions, … etc.
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RBC+UKQCD, BMW, QCDSF, …

Takaishi & de Forcrand, PRE73 (2006);
Clark & Kennedy, LAT2007;

Poster by Kennedy
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3. Algorithmic developments…(cont’d)

Combination of  the UV/IR mode separation and the 
Multiple time scale MD integrator is now common 
technique.

There still remains the room to improve
UV/IR separation

Blocking,  Rational Approx,  Preconditiner ….
Low / IR mode : reweighting / Noisy Metropolis ....

MD integrator
Omelyan + Multiple time scale
Custom made MD integrator
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3. Algorithmic developments…(cont’d)

Solver Improvements
(1) Mixed Precision / inner-outer solver

Single precision : effectively doubles memory band width,  
data cache size,  register size.  
Efficiency:   S.P.  >  D.P.  Case,  mixed prec. is important.
Intel 64/AMD 64;  Single prec. > Double prec. 
Cell PS3/GPGPU;  Single >> Double.

(2) Deflation Technique
Remove / suppress small eigenvalues. Better solover
behavior
Luscher’s local coherency for low modes. RG blocking like 
deflation.

(3) Multi Grid solver
Adoptive Multi Grid (RG blocking) solver/preconditioner
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3. Algorithmic developments…(cont’d)

(1) Mixed precision / Inner-Outer solver
Flexible Preconditioner

Any iterative solver for Ax=b. (short recurrence solver)

Accumulated r and x should satisfy  r=b-Ax at each 
update point.
To make flexible precondition, modify  the update lines as

.]satisfy     still    and    new[
 
 

".]"tor search vec-pre a and  ""scalar  agiven [
.]satisfy        and  [

Axbrxr
pxx

qrr
Apq

p
Axbrxr

−=
+=
−=

=

−=

α
α

α
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3. Algorithmic developments…(cont’d)

(1) Mixed precision / Inner-Outer solver
Right preconditioning ;  AMy = b; x = My.

Search vector is computed for AMy=b.
The solution-residual relation is kept for r=b-Ax locally.
This enables us to change M from iteration to iteration
(Flexible preconditioner).
Put inner solver for
M can be single precision. r=b-Ax is kept in double precision.

.]satisfy     still    and    new[
 
 

)for tor search vec    :(    

".]"tor search vec-pre a and  ""scalar  agiven [
.]satisfy        and  [

Axbrxr
vxx
qrr

bAMyAMpAvq
Mpv

p
Axbrxr

−=
+=
−=

===
=

−=

α
α

α

1−≈ AM
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3. Algorithmic developments…(cont’d)

(1) Mixed precision / Inner-Outer solver
CG,  BiCGStab, CGS, ……, can be flexible.

The most simple case :  Richardson / Iterative refinement.
• BMW collab. uses D.P. Richardson for outer-solver + S.P. CG 

for inner-solver

• PACS-CS: uses D.P. BiCGStab+ S.P. BiCGStab

For Arnoldi type solver [GMRES,GCR…]
Longer reccurence relation
Keep a series of intermediate vectors (like v in prev. page.)
Then FGMRES, GCR(Lüscher) can be flexible.

By tuning solver parameters
Most Time is spent in (inner) single precision arithmetic.
If the single precision kernel has much better performance than 
that with double precision kernel.
Best performance is obtained with mixed precision solver.
Promising for GPGPU / CELL computing!!

[Numerical Recipes]

[BMW collab., Dürr et al.,hep-lat/0802.2706]

This is already common to 
Overlap fermions?

Low prec. sign func. (inner)
+ High prec. sign func. (outer)
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3. Algorithmic developments…(cont’d)

(2) Deflation technique

Critical Slowing down of Solver iteration is caused by small / 
near zero eigenvalues.

By subtracting such modes from the matrix spectra, we can 
recover from the slowding down.

Deflation technique remove/suppress the near zero  
eigenspace of D.

This is already common to 
Overlap fermions (sign functoin)
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3. Algorithmic developments…(cont’d)

(2) Deflation technique  （To Solve:                                                       ）

Matrix A has p-dimensional 
subspace with small eigenvalues.     
Let  c and u spans the subspace.

Suppose the projection operator:

Then consider the following 
preconditiond problem.
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=
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=
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−=
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The soluton x of Eq.(1) can be written 
with  y of Eq.(2) as

Solving Eq.(2) is easier than solving 
Eq.(1), because the coeffcient matrix of 
Eq.(2) PA does not contains small 
eigenvalues.
If The cost to obtain C and U is small, 
deflation improves solver perfomance.
How to construct  the subspace  
“Cp”?)2(       )( LPbyPA =

bCUQyx pp
†+=

bbCCPb
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3. Algorithmic developments…(cont’d)

(2) Deflation technique (cont’d)
Many works by

To avoid exact eigen pairs computation
(a) Overlap eigen mode computation and D^-1 computation.

GMRES-DR,GMRES-E..:Wilcox, Morgan & Abdel-Rehim
GCRO-DR: Parks & Sturler

These algorithms can solve  Dx=b and  eigen pairs 
simultaneously.

(b) Make use of Local coherency property of low modes.
Luscher’s Domain decomposed subspace blocking with local 
coherency. 

[Luescher, JHEP07(2007),hep-lat/0710.5417;
A.Stathopoulos, K.Orginos, hep-lat/0707.0131;    

W.Wilcox, PoS(LATTICE2007),hep-lat/0710.1813;  
A.Abdel-Rehim,R.B.Morgan,W.Wilcox,PoS(LATTICE2007);

R.B.Morgan,W.Wilcox,math-ph/0707.0505,math-ph/0405053;
M.L.Parks, E.De Sturler et al, SIAM J. on Sci.Comp. 28(2006)1651

LATTICE2008: Poster by Abdel-Rehim, Talk by Wilcox]More details see Wilcox @Lat2007.
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3. Algorithmic developments…(cont’d)
(a) Overlap eigen mode computation and D^-1 computation.
Very effective for few Near zero modes / negative eigen modes case.

Near zero modes case
First equation or few equations are solved with GMRES-DR. 
Once the subspace converged, change solver with GMRES-proj, 
or Deflated solver.
Normal GMRES stagnates [dot-dot-dashed line]
Solver with Deflation/Projection converges. [other lines]
Critical slowing down is avoided.

[Wilcox, LAT2007]

[PACS-CS collab. uses GCRO-DR for inner solver]
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3. Algorithmic developments…(cont’d)

(b) Make use of Local coherency property of low modes.
Low modes can be well approximated by few blocked basis vectors 

[Local coherency].

φ is constructed after few smoothing processes                   
via inverse iteration on N-random vectors.
Then blocked and orthogonalized.                                                               
The subspace dimension is effectively enlarged:                 
N x [#of Lattice blocks]
C={φ} spans the deflation subspace.
Suitable for Domain-Decomposition                                                   
and Memory efficient. 

∑ ∑
Λ =

Λ
Λ≈

blocks N

j
jj xcx

1
),( )()( : vectormede low a φψ

[Lüscher, JHEP07(2007)081]
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3. Algorithmic developments…(cont’d)

(b) Make use of Local coherency property of low modes.
Using the Low mode rich subspace C, the deflation projector is 
constructed as

This contains B which is the projection of D in to the subspace C.
For Wilson-Dirac operator, the small Wilson-Dirac operator B becoms

Similar to RG blocked W.D.operator. Still has nearest neighbor 
interaction. 
Using this projection, critical slowing down is avoided.
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3. Algorithmic developments…(cont’d)

(3) MultiGrid Solver
MultiGrid solver also removes critical slowing down.
Choice of subspace basis is important. (Prolongator)
Similar to Luscher’s deflation. Low mode enhancement is important.

To solve                  , use the preconditione defined by

with

as blocked is  then   
enhanced mode low  :)(

 vectorrandom   :)(

l

l
k

l

l

w
vDw

Nxv
−=

Talk by M. Clark @ this conference.
[Brannick,Brower,Clark,Osborn,Rebbi, 

PRL100(2008);LAT07]
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†CCBP 1−≡



32

3. Algorithmic developments…(cont’d)

(3) MultiGrid Solver (cont’d)
Then Solve

P is the approximation of D^-1 in 
the subspace C.

P contains B^-1. to solve this next 
blocking is applicable.

Recursively applying this blocking.
⇒ MultiGrid.  V cycle

Similar to Luscher’s deflation 
subspace blocking. Low mode 
enhancement is important.

No critical slowing down

PbPDx =

Mass

QCD 16^3x32 Wilson Case
Talk by M. Clark @ this conference.
[Brannick,Brower,Clark,Osborn,Rebbi, 

PRL100(2008);LAT07]

Another RG blocking by A. Borici, hep-lat/0704.2341; LAT2007.
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3. Algorithmic developments…(cont’d)
Solver Works in this conference:

J.Bloch (for Overlap fermion) [Mon. Chesapeake C],
J.Osbon (Initial guess for multi-shift solv.)[Mon. Chesapeake C]
W.Wilcox (Deflation/Lanczos/multiple)[Mon. Chesapeake C]
A.Abdel-Rehim (Seed method/multiple) [Poster S.A] 

Mixed precision solver effectively enhances the solver 
performance.

application to GPGPU/CELL?

Deflation and MultiGrid blocking with low mode-rich 
basis vector removes Critical slowing down.
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3. Algorithmic developments…(cont’d)

Algorithm works in this conference:
[July 15, Tue. Chesapeake B]

A. Bazavov (for HISQ action dynamical sim.)
R.C. Brower  (Mobius Algorithm for DW/GapDW fermion.)
M. Clark  (Remove Critical Slowing down) 
T. Kruth (Dynamically Smeared Fermions) 

[July 16, Wed. Chesapeake B]
O. Witzel (Polynomial HMC) 
R. Renfrew (Reduce Ch.Sym.breaking for DW)
F. Palombi (Reweighting for Low mode Quark determinant)
W. Cherrington (Dual Lattice Algorithm)
J. Mucci (SiCortex Machines)

[July 15, Tue. Poster session]
A. Pochinsky (Efficient QCD code made simpler: qa0)
L. Piccoli (Tracking QCD workflows)
G. von Hippel (Petrurbative imp. with HISQ fermions)
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4. Outlook: Physics at 1PFlops
Dynamical QCD simulation at 1 PFlops

Physical quark masses (Mud < 10 MeV, L=3fm,a=0.1fm)
Cost O(10) Tflops Years    Wilson/KS type      

[ALPHA,BMW,CERN,ETM,JLAB,PACS-CS,QCDSF,MILC,..]

O(100) Tflops Years? Overlap/DW type
[UKQCD/RBC,JLQCD/TWQCD,SESAM/QCDSF,…]

Finer lattice spacing (1/a > 6 GeV?,  L=2fm, 64^3x128 lattice)
Charm quarks

Continuum limit
Larger lattice volume ( L > 6 fm?, 1/a=2GeV, 64^3x128 lattice)

Multi hadron system

GeV61GeV5.1GeV3.0 ≈<≈<≈Λ /amcharmQCD

fm03.00.13fm/1fm6.0/1 ≈>≈>≈Λ amcharmQCD

error) (6%   06.0)6/5.1()( 22 =≈cam

fm1.0       fm6.0/1         fm2/1

GeV21  GeV3.0     GeV1.0   

≈>≈Λ>≈

≈<≈Λ<≈

am

/am

QCD

QCD

π

π

Multi scale physics
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4. Outlook: Physics at 1PFlops
Dynamical QCD simulation at 1 PFlops

Empirical cost formula

Now O(10)TFlopsYears for

Finer lattice spacing    (1/a > 6 GeV?,  L=2fm, 64^3x128 lattice)
Charm quark on fine lattcie requires a=0.03 fm lattice.

The Cost is (2/3)^5*3^6 =96  larger. ⇒ O(1) Pflops Years is required.
Still difficult problem? ⇒ 10PFlops probrem.

Larger lattice volume   ( L > 6 fm?, 1/a=2GeV, 64^3x128 lattice)
Multi hadron system by doubling the lattice extent.

The Cost is 2^5 =32  larger. ⇒ O(300) Tflops Years is required.
30% sustained speed with 1 PFlops peak speed machine can handle this 

problem.
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[DDHMC: Del Debbio et al..JHEP0702(2007)056]
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4. Outlook: Physics at 1PFlops

( L > 6 fm?, 1/a=2GeV, 64^3x128 lattice)
Nested Domain Decomposition

+Some Improvement technology.
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volume simulation
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4. Outlook: Physics at 1PFlops

fm6

fm3 fm5.1

fm8.0

Communication with Surface data only.
Bandwidth can be properly treated by this 
blocking.
But Latency is limited by speed of light.

or  GPGPU 
Accelerator
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5. Summary
Machine trends

Multi core architecture is the trend.
GPGPU has better cost performance, but actual application for 
LQCD is now beginning.  Large scale simulation is still missing.
CELL becomes common archtecture for HPC?

Algorithm
UV/IR separation + multiple time step MD is common.
Deflation and MG remove critical slowing down.

Physics at 1 PFlops
Large volume simulation for multi hadron system can be a target. 
[Multi scale physics]
To tread Multi scale physics, the structure of machine 
architecture should be taken account.

That’s all Thank you!



40

Backup slides
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4. Outlook: Physics at 1PFlops

Wilson/KS type fermion can handle multi-hadron system with  
1Pflops machine in principle. 
Whole System performance analysis that has been done, for ex. 
QCDOC, CP-PACS, APE…., is again required.

Domain-Wall / Overlap fermion : Are there this kind of 
decomposition ?
D.W. / 5D-rep. Overlap can use geometric preconditoner.
4D-Overlap requires special kernel for geometric decomposition?    

Dirichlet boundary condition for OV op.

Enormous works for Dynamical Overlap/DW fermions

QCD Software / infrastructure works

[Luscher, “Shrodinger Functional with exact Chiral
symmetory”, JHEP 0605 (2006) 042]

[Many people ,RBC,QCDSF,SESAM,JLQCD,……..]

[MILC code; ILDG; B.Joo,USQCD; A.Borici,QCDLAB; …]

That’s all Thank you!
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2. Machine Trends (cont’d)

For QCD (dynamical)
Hybrid Monte Carlo (HMC) 
Dynamical Quark part requires huge amount of hopping 
matrix multiplication.

This computation requires
～ 3 Byte/Flop for a site…

Register, Cache, are memory blocking are required at each 
layer.

( ) ( )[ ]∑
=

−+ ++−=
4

1
,ˆ,ˆ )(1)(1),(

µ
µµµµµµ δγδγ mnmn mUnUmnM †
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3. Algorithmic developments…(cont’d)

(1) Transform/split  det[D] using preconditioner (Action Prec.)
(b’) Point / stripe (RG) blocking for MG solver, Overlap kernel

Change Site Ordering

]det[]det[
]det[]det[

det]det[

1

bbrr
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DD
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: Schur complement of DbbS

[A. Borici, hep-lat/0704.2341; LAT2007]

type1

type2
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3. Algorithmic developments…(cont’d)

(b’) Point / stripe (RG) blocking for MG solver, Overlap kernel
[A.Borici, hep-lat/0704.2341; LAT2007]

type1 type2

Inv type2Inv type1

β=5.4, 8^4 lattice

bbS

type1

type2
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3. Algorithmic developments…(cont’d)

(c) n-th root trick  and Rational approximation RHMC
Rational approximation

C.f.  Multi boson algorithm  
Hermitian Polynomial approx.  (Luscher ‘93)
Non-Hermitian Polynomial approx. (Borrelli, de Forcrand, Galli
‘96)

For RHMC algorithm , similar variant is possible.
Hermitian Rational approx.  VS  Non-Hermitian Rational 
approx.
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3. Algorithmic developments…(cont’d)

(2) MD integrator improvements
Omelyan integrator
Simple leapfrog

This operator does not conserve H, but conserves 
Shadow Hamiltonian H’.
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3. Algorithmic developments…(cont’d)

(2) Deflation technique
LQCD requires thousand of linear equation solution

Multiple right-hand side or chain of linear equations.
Quark propagator
Solver in HMC trajectory

The reduction of condition number of coefficient matrix D
is very effective.   Efficient Preconditioning is desired.
Deflation technique is one of the efficient technique to 
reduce the condition number.

Deflation remove/suppress small eigenspace of D.
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iiiii

ii

DDibxD
ibDx

K

K



48

3. Algorithmic developments…(cont’d)
(2) Deflation technique (cont’d)

(a) Overlap eigen mode computation and D^-1 computation.
Use Arnoldi type Solver [Krylov subspace method] for Ax=b. 

VK+1 and HK contains the spectrum info. of A.
At restarting, construct Harmonic-Ritz pairs.
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3. Algorithmic developments…(cont’d)

(b) Make use of Local coherency property of low modes.
Deflation  projector contains small linear equation B^-1.

For Wilson-Dirac operator, the small Wilson-Dirac operator B becoms

Similar to RG blocked W.D.operator. Still has nearest neighbor 
interaction. 
To avoid frequent application of Projection,                    
P is applied to SAP preconditioned problem:
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3. Algorithmic developments…(cont’d) [Lüscher,hep-lat/0710.5417]

(b) Make use of Local coherency property of low modes.

Deflation accelerates DDHMC 
performance
Factor 2-3 improvement is 
observed.
Speedup is significant for 
smaller quark masses. 

Deflation removes critical slowing down.
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3. Algorithmic developments…(cont’d)

(c) n-th root trick  and Rational approximation RHMC
Further cost reduction using Rational approximation
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Partial fraction form

RHMC:   RBC+UKQCD, DW Nf=2+1 simulation [hep-lat/0804.0473;PRD76(2007)]
Clark and Kennedy KS fermion [hep-lat/0610047;PRD75(2007)]

Takaishi and Nakamura, One-flavor Wilson fermion F.T. [LAT2007,hep-lat/0711.3888]
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3. Algorithmic developments for dynamical QCD 
(Wilson type)

Lattice QCD partition function

Nf=2+1 partition function 
(     integ.out)
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HMC algorithm to generate {U}.
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2. Machine Trends (cont’d)
1～10 PFlops machine Bottlenecks

Memory band width
DDR3(1333) 10GB/sec
RambusXDR 26GB/sec
Byte/Flop < 0.25 (single CPU)
GPGPU is more better 100GB/sec

Multi slots/node enhances the node 
speed. [SMP or NUMA] but…

IO/ Network band width
Depends on the NIC but

Myrinet 10G  1.25GB/sec
Infiniband DDR  2.0GB/sec
Ex.   Byte/Flop < 2/48 = 0.04
To balance,  multi rail  (x4 or x8…)

( ) ( )[ ]∑
=

−+ ++−=
4

1
,ˆ,ˆ )(1)(1),(

µ
µµµµµµ δγδγ mnmn mUnUmnM †

Hopping Mult :
～3Byte/Flop req.

Blocking is required at each level (core/cpu/node) for 1PFlops machine
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3. Algorithmic developments…(cont’d)

(c) n-th root trick  and Rational approximation RHMC
Further cost reduction using Rational approximation
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=> finer MD step
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Expensive cost, small force
=> Coarser MD step

DW β=2.13,
24^3x64x16
mud/ms=0.25
RHMC force norm
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3. Algorithmic developments…(cont’d)

(1) Transform/split  det[D] using preconditioner (Action Prec.)
(b) Luscher Domain-Decomposition preconditioned 

DDHMC

How about another decomposition/blocking?
ILU preconditing
Point / stripe blocking for MG solver, Overlap kernel
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[Lüscher , JHEP 0305 ‘03,CPC 165 ’05]

[A. Boriçi, hep-lat/0704.2341; LAT2007]

IR modeUV modeDDHMC simulations:
ALPHA: Von Hippel
CERN: Luscher, Debbio, Giusti, Petronzio
PACS-CS

[M. Peardon, hep-lat/0011080]
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3. Algorithmic developments…(cont’d)

(2) MD integrator improvements
Optimize / Customize your MD integrator

Shadow Hamiltonian contains errors expressed 
with Poisson brackets.
Offline measurement of Poisson brackets;                       
exp. val.  ＜{A,{B,{….}}}＞
Minimize the errors by tuning integration 
parameter,λ, number of time scale, number of 
pseudo-fermions, … etc.

Takaishi & de Forcrand, PRE73 (2006);
Clark & Kennedy, LAT2007;
Poster by Kennedy
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