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Content of the talk

• Motivations

• The density of states (definition and properties)

• Numerical study of finite size effects

• Apparent convergence of series expansions

• Conclusions and perspectives

See arXiv:0807.0185 [hep-lat]
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Motivations

Problems that can be addressed using the density of states:

• How to combine weak and strong coupling expansions

• Study of finite size effects for small lattices

• Large order behavior of perturbative series

• Location of Fisher’s zeros for large lattices (poster)
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Figure 1: Fisher’s zeros from the density of states with a numerical
interpolation (left) and a polynomial approximation (right).
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The density of states

Focus: SU(2), Wilson’s action, L4 lattice, periodic b. c.

Np = 6 × L4 is the number of plaquettes

Z(β) is the Laplace transform of n(S), the density of states

Z(β) =

∫ 2Np

0

dS n(S) e−βS ,

with

n(S) =
∏

l

∫

dUlδ(S −
∑

p

(1 − (1/N)ReTr(Up)))

ln(n(S)) is a ”color entropy” (extensive).
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A SU(2) duality (g2 → −g2 means S → 2Np − S)

For cubic lattices with even number of sites in each direction and a gauge
group that contains −1, it is possible to change βReTrUp into −βReTrUp

by a change of variables Ul → −Ul on a set of links such that for any
plaquette, exactly one link of the set belongs to that plaquette (Li, YM
PRD71 016008). This implies

Z(−β) = e2βNpZ(β)

n(2Np − S) = n(S)

Thanks to this symmetry, we only need to know n(S) for 0 ≤ S ≤ Np .
(Note < S >= Np means < TrUp >=0)
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The one plaquette case (Li, YM, PRD71 054509)

n1pl.(S) =
2

π

√

S(2 − S)

n(S) ∝
√

S for small S implies Z ∝ β−3/2 for large β

1/β corrections can be calculated by expanding the remaining factor
√

2 − S

Series with finite radius of convergence → asymptotic series if we integrate
over S from 0 to ∞ (instead of 0 to 2).

It is easier to approximate n(S) than the corresponding partition function.
Does this survive the infinite volume limit?

n(S) near S = 2 can be probed by taking β → −∞ in agreement with the
common wisdom that the large order behavior of weak coupling series can
be understood in terms of the behavior at small negative coupling.
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Volume dependence

f(x,Np) ≡ ln(n(xNp,Np))/Np

The SU(2) duality symmetry implies that

f(x,Np) = f(2 − x,Np)

The existence of the infinite volume limit requires that

limNp→∞f(x,Np) = f(x) ,

In the same limit, the integral can be evaluated by the saddle point method.
The maximization of the integrand requires

f ′(x) = β
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Numerical calculation
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Figure 2: Results of patching Pβ(S)eβS for 44 and 64.
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Finite Volume Effects
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Figure 3: The difference between ln(n(S))/Np for 44 and 64. The noise on
the right is consistent with our understanding of the volume (in)dependence
of the strong coupling expansion.
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Volume dependence of the leading log
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Figure 4: The difference between ln(n(S))/Np (left) and (ln(n(S))/Np)/
ln(S/Np) (right) for 44 and 64. Predicted value of the plateau is -0.0013.
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Weak and strong coupling expansions
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Strong coupling expansion

P (β) ≃ 1 +
∑

m=1

a2m−1β
2m−1

(From Balian et al.). With periodic b.c., topologically trivial graphs have
volume independent contributions.

f(1 + y) = g(y) ≃
∑

m=0

g2my2m

h(y) ≡ g(y) − A(ln(1 − y2))

In the infinite volume limit, we have A = 3/4. Expanding

h(y) ≃
∑

m=0

h2my2m
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Evidence for finite radius of convergence
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Figure 7: Logarithm of the absolute value of the difference between the
numerical data and the strong coupling expansion of P (left) and f (right)
at successive orders. For reference, we also show the numerical errors.
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Weak coupling expansion

P (β) ≃
∑

m=1

bmβ−m

From Karsch, Heller, Alles et al.+ dilogarithm model for order 4 and higher;
We assume the behavior

f(x) ≃ A ln(x) +
∑

m=0

fmxm

Using the saddle point , β ≃ A/x ≃ A/(b1/β) At finite volume, the
saddle point calculation of P should be corrected in order to include 1/V
effects (V = LD). If we perform the Gaussian integration of the quadratic
fluctuations, and use the V dependent value of b1 given below,

A = (3/4) − (5/12)(1/V )
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This leading coefficient correction, predicts a difference of −0.0013ln(x)
for the difference between f(x) for a 44 and 64. A closed form expression
can be found using the zero mode contribution (Coste et al.) for b1. For
the case Nc = 2 and D = 4,

b1 = (3/4)(1 − 1/(3V ))

Assuming that ∂P/∂β has a logarithmic singularity in the complex β plane
and integrating (very successful for SU(3), YM PRD74:096005)

∑

m=1

bmβ−k ≈ C(Li2(β
−1/(β−1

m + iΓ)) + h.c ,

with
Li2(x) =

∑

k=1

xk/k2 .
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Figure 8: Logarithm of the absolute value of the difference between the
numerical data and the weak coupling expansion of P at successive orders
(left) and without the zero mode (right).
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Figure 9: Numerical value of f(x) compared to the weak coupling expansion
at successive orders (left). Logarithm of the absolute value of the difference
between the numerical data and the weak coupling expansion of f at
successive orders (right).
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Expansion in Legendre polynomials

h(y) ≡ g(y) − A(ln(1 − y2)) .

f(1 + y) = g(y) ≃
∑

m=0

g2my2m

h(y) =
∑

m=0

q2mP2m(y)

Coefficients decay exponentially.

Approximations improve uniformly with the order.
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Figure 10: Legendre polynomial coefficients q2m with the three methods
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Conclusions

• Good overlap of weak and strong coupling at low orders (but large orders
similar to the plaquette)

• Finite size effects in the leading logarithm under control

• Apparent convergence of polynomial approximations after subtracting
log. singularities (this allows us to work in the complex S plane).

• Application: Fisher’s zeros (in progress)

• Plans: decimation in a multicoupling generalization of n(S), finite size
effects on asymmetric lattices, U(1), first order PT, ....
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Consider a lattice model in D dimensions, with lattice spacing a,
linear size N , volume V = ND and nonlinear scaling variables ui.

Under a RG transformation

a → ℓa; N → N/ℓ ;ui → ℓyiui

with ℓ a fixed value (e.g. 2) that cannot be shrunk to 1

For scalar models with average magnetization m

Veff(ℓymm, ℓyiui, N/ℓ) = ℓDVeff(m,ui, N)
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For gauge models (SU(2) hereafter) with Np = D(D−1)
2 V plaquettes

Z(β, {βi}) =

∫ 2Np

0

dS n(S, {βi})e−βS ,

n(S, {βi}) =
∏

l

∫

dUlδ(S −
∑

p

(1 − (1/N)ReTr(Up)))e
−

P

i βi(1−χi(Up)/di)

f(s, {βi},Np) ≡ ln(n(sNp, {βi},Np))/Np

can be used as the effective potential if we can find a RG transformation
for the {βi} associated with the characters χi ( e.g. Migdal-Kadanoff)

limNp→∞f(s, {βi},Np) = f(s, {βi})
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