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Introduction

Motivation

The experimental evidence for rapid thermalization of the dense matter created in heavy ion
collisions at RHIC has led to the interpretation of the quark gluon plasma above but close to the
transition temperature as a strongly interacting medium that has properties of an almost perfect
liquid.

These experimental findings also renewed the interest in determining transport properties of
gauge theories through the calculation of correlation functions of the energy-momentum tensor
on the lattice.

Recently it has been argued that close to the transition from low temperature hadronic matter to
the plasma phase of QCD bulk viscosity might play a much more important role than shear
viscosity [Kharzeev&Tuchin(2007)].

The singular behavior of bulk viscosity in the vicinity of a critical point has long been known in
statistical physics. In particular, at the critical point of the liquid gas transition it has been argued
that the divergence of ζ is strong and, in fact, almost quadratic in the inverse reduced
temperature t . The singular behavior, ζ ∼ t−zν+α, with α, ν denoting static critical exponents of
the 3-d Ising model and z being a dynamical exponent characterizing the equilibration of density
fluctuations, goes along with a strong divergence of the relaxation time for density fluctuations,
τR . Their ratio, ζ/τR ∼ tα, however, is proportional to the inverse of the specific heat and thus
vanishes slowly at the critical point.

The SU(2) gauge theory with its second order deconfinement phase transition seems to be an
ideal model to explore critical behavior of dynamical properties, e.g. transport coefficients.
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Introduction

Energy-Momentum tensor and bulk viscosity

We indicate with Θµν the energy-momentum tensor. The energy density is ε = Θ00, and the
pressure is given by 3p = −Θii .

Given a zero-momentum connected correlation function at finite temperature T :

GXY (τ,T ) =

Z
d3x〈X(~x , τ)Y (~0, 0)〉T ,

its spectral function ρXY is given by:

GXY (τ,T ) =

Z
dωρXY (ω,T )cosh[ω(τ − 1/2T )]cosech(ω/2T ) .

The bulk viscosity can be extracted from the low frequency behavior of the spectral function of
the pressure-pressure correlator:

ζ(T ) = π lim
ω→0

ρpp(ω,T )

ω
.
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SU(2) thermodynamics

Differential formalism

Define the action on an anisotropic lattice as:

S =
2N
g2
σ

X
x,i>j=1,2,3

„
1−

1
N

ReTrPij(x)

«
+

2N
g2
τ

X
x,j=1,2,3

„
1−

1
N

ReTrP4j(x)

«
.

Thermodynamic quantities can be obtained taking derivatives of the free energy, e.g.:

ε = −
1
V

∂ ln Z
∂(1/T )

− ε0

p = T
∂ ln Z
∂V

− P0 ,

where we have subtracted the vacuum contribution of T=0.
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SU(2) thermodynamics

Differential formalism

On an isotropic lattice these are:

ε

T 4
= NN4

τ

n
3
h
2g−2 − (cσ − cτ )

i
(Pσ − Pτ ) + 3 [cσ + cτ ] (2P0 − Pσ − Pτ )

o
p

T 4
= NN4

τ

n h
2g−2 − (cσ − cτ )

i
(Pσ − Pτ )− 3 [cσ + cτ ] (2P0 − Pσ − Pτ )

o
s

T 3
=
ε+ p
T 4

= 4NN4
τ

h
2g−2 − (cσ − cτ )

i
(Pσ − Pτ )

Θµµ

T 4
=
ε− 3p

T 4
= 12NN4

τ [cσ + cτ ] (2P0 − Pσ − Pτ )

where

g−2 = g−2
σ = g−2

τ ; B(g−2) ≡ dg−2

d ln a

˛̨̨
ξ=1

= −2 (cσ + cτ ) ; cσ,τ =
∂g−2
σ,τ

∂ξ

˛̨̨̨
ξ=1

Pσ = 1
3N3
σNτ

P
x,i>j=1,2,3

“
1− 1

N ReTrPij(x)
”

; Pτ = 1
3N3
σNτ

P
x,j=1,2,3

“
1− 1

N ReTrP4j(x)
”
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SU(2) thermodynamics

Critical energy density and pressure

As check of our setup we perform a finite-size scaling analysis of ε and p at the critical point.
From the scaling ansatz for the singular part of the free energy density f (t ≡ (T − Tc)/Tc ):

fs(t , L−1) = b−d fs(tbyt , L−1b)

it follows for the energy density and pressure (ν = 1/yt , α = 2− dν):„
p(Tc)

T 4
c

«
Nτ ,Nσ

=

„
p(Tc)

T 4
c

«
Nτ ,∞

+ apN−3
σ ,„

ε(Tc)

T 4
c

«
Nτ ,Nσ

=

„
ε(Tc)

T 4
c

«
Nτ ,∞

+ aεN
−(1−α)/ν
σ .

The critical exponents α = 0.110(1) and ν = 0.6301(4) are known from the 3d Ising model.

From the critical behavior of ε and p it follows that for generic combinations of the two, like ε− 3p
and ε+ p, will have the same volume scaling as the energy density.
Note also that the value of P0, entering in the above expressions, is inessential in the analisys of
finite-size scaling at fixed Nτ , since it can be considered as a constant.
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SU(2) thermodynamics

Critical energy density and pressure

We used lattices with Nτ = 4, 6, 8 and Nσ/Nτ up to 24 (963 × Nτ ). The infinite volume critical
couplings are already known:

Nτ = 4 βc = 2.29895(10) [Engels&Scheideler(1999)]

Nτ = 6 βc = 2.4265(30) [Engels,Fingberg&Miller(1992)]

Nτ = 8 βc = 2.5115(40) [Fingberg,Heller&Karsch(1993)]
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SU(2) thermodynamics

Critical energy density and pressure
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SU(2) thermodynamics

Critical energy density and pressure

To check the universality class, using the Nτ = 4 lattices, where more volumes are available, we
determined the critical exponent (1− α)/ν by a fit to the expected functional form of the energy
density.
The fit yields (1− α)/ν = 1.41(6) in agreement with (1− α)/ν = 1.412(1) for Ising 3d.

Using the known values for the critical exponents, we extracted the infinite volume critical ε and
p. The fit was done fixing the known value of the critical exponents and using only lattices with
Nσ/Nτ > 4.

Nτ ε(Tc)/T 4
c P(Tc)/T 4

c
4 0.28724(53) 0.02423(30)
6 0.2722(31) 0.0135(8)
8 – 0.0107(15)

The result for ε(Tc)/T 4
c is compatible with the value ε(Tc)/T 4

c = 0.256(23) from
[Engels,Karsch&Redlich(1995)].

The result for the critical pressure is new.
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Correlation functions

Correlation function of Θµµ

The correlation function for the trace of the energy-momentum tensor can be decomposed as:

GΘΘ(τ,T ) = Gεε(τ,T )− 6Gεp(τ,T ) + 9Gpp(τ,T ) .

The correlation functions involving the energy density operator GεY (τ,T ) are independent of τ in
the continuum limit. This is easily seen since

〈H(τ)Y (0)〉T =
1
Z

Tr
h
e−H/T H(τ)Y (0)

i
is independent on time. It also follows that:

GεY (τ,T ) = −
∂

∂(1/T )
〈Y 〉T .
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Correlation functions

Correlation function of Θµµ

The correlation function for the trace of the energy-momentum tensor can be decomposed as:

GΘΘ(τ,T ) = Gεε(τ,T )− 6Gεp(τ,T ) + 9Gpp(τ,T ) .

The whole τ dependence of GΘΘ is thus expected to arise from the pressure-pressure
correlations.

On the other hand, the dominant temperature dependence comes from the energy-energy
correlator, which is proportional to the specific heat:

Gεε(τ,T )

T 5
∼

cV

T 3
.

At non-zero lattice spacing the direct relation between correlation functions involving the energy
operator and temperature derivatives of any observable is violated by cut-off effects.
Nonetheless we expect that these are small in the vicinity of a second order phase transition.
One thus may expect that at least the singular behavior of correlation functions that involve
correlations with the energy operator will be independent of Euclidean time.
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Correlation functions

Correlation function of Θµµ

The correlation function for the trace of the energy-momentum tensor can be decomposed as:

GΘΘ(τ,T ) = Gεε(τ,T )− 6Gεp(τ,T ) + 9Gpp(τ,T ) .

Close to the deconfinement transition we therefore expect that GΘΘ will show, for every τ , a
critical behavior that coincides with that of the specific heat in a 3-dimensional Ising model:

GΘΘ(τ,T )

T 5
∼

cV

T 3
∼ A±

˛̨̨̨
T − Tc

Tc

˛̨̨̨−α „
1 + B±

˛̨̨̨
T − Tc

Tc

˛̨̨̨ω
+ ...

«
for T → T±c .

α ν ω/ν A+/A−
0.110(1) 0.6301(4) 0.84(4) 0.54(1)

Like α, also the amplitudes ratio A+/A− and the correction to scaling exponent ω are universal.
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Correlation functions

Critical behavior of GΘΘ – simulation details

We have calculated the correlation function GΘΘ(τ,T ) close to the deconfinement transition
point of the SU(2) gauge theory. In our simulation we use lattices of size N3

σNτ with Nτ = 4. This
gives us information on the correlation function at two non-zero values of Euclidean time, i.e. at
τT = 1/4 and at the midpoint τT = 1/2.

Most of our simulations have been performed at temperatures close to the phase transition
where the correlation length becomes large. This required calculations on large spatial lattices in
order to eliminate finite volume effects.

We used spatial lattice sizes with aspect ratios Nσ/Nτ varying from 8 (323 × 4 lattices) up to
values as large as 32 (1283 × 4 lattices).

A large number of configurations are required to reach the statistical accuracy – O(5%) at
τT = 1/2 – needed for scaling test near the critical point. We have generated about 1 · 106

configurations on our smaller lattices and up to 4 · 105 on the large lattices.

The algorithm used to generate the configurations uses a standard mixture of heat-bath and
over-relation updates in a typical ratio of 1:4-1:6 to keep correlations between consecutive
configurations small. Autocorrelation times in the transition region range from O(1) on the small
lattices to about 40 on the largest lattices.

Numerical simulations have been performed on the BlueGene/L, BlueGene/P at the New York
Center for Computational Science (NYCCS), using a code developed specifically for this work.
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Correlation functions

Critical behavior of GΘΘ

14

16

18

20

22

24

26

28

30

32

34

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

Gθθ(1/2,T)/T5

T/Tc

Nσ
16
24
32
48
64
80
96

128

C. Pica (BNL) LATTICE 2008 - 7/17/2008 14 / 31



Correlation functions

Critical behavior of GΘΘ – finite size scaling at Tc

At Tc the singular part behavior of GΘΘ is expected to be:

GΘΘ(τ,Tc)/T 5
c = AσNα/νσ

“
1 + BσN−ω/νσ

”
+ Cσ ,

where Aσ , Bσ , Cσ might depend on Euclidean time.
This functional form gives excellent fits for both datasets at distance τT = 1/4 and τT = 1/2.
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Correlation functions
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At Tc the singular part behavior of GΘΘ is expected to be:

GΘΘ(τ,Tc)/T 5
c = AσNα/νσ

“
1 + BσN−ω/νσ

”
+ Cσ ,

where Aσ , Bσ , Cσ might depend on Euclidean time.
This functional form gives excellent fits for both datasets at distance τT = 1/4 and τT = 1/2.

The fits yields:

Aσ(τT = 1/2)/Aσ(τT = 1/4) = 1.01± 0.19

Bσ(τT = 1/2)/Bσ(τT = 1/4) = 1.01± 0.58 .

This indicates that at Tc the singular contributions to GΘΘ(τ,T ) are independent on the
Euclidean time separation τ .

τT Aσ Bσ Cσ
free 1/4 9.2(1.2) -2.4(1.0) 26.3(2.7)
fit 1/2 9.1(1.2) -2.4(0.9) 8.4(2.9)

combined 1/4 9.15(73) -2.39(59) 26.4(1.9)
fit 1/2 8.3(1.7)
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Correlation functions

Critical behavior of GΘΘ – scaling in the critical region
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Correlation functions

Critical behavior of GΘΘ – scaling in the critical region
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Correlation functions

Critical behavior of GΘΘ – scaling in the critical region

In the vicinity of Tc we expect the data to be well described by the scaling ansatz,

GΘΘ(τ̂ ,T )/T 5 = A±t−α(1 + B±tω) + C + D t ,

where A+, B±, C, D are free parameters, which again all may depend on Euclidean time. This
provides very good fits in the interval T/Tc ∈ [0.94, 1.05].
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Correlation functions

Critical behavior of GΘΘ – scaling in the critical region

In the vicinity of Tc we expect the data to be well described by the scaling ansatz,

GΘΘ(τ̂ ,T )/T 5 = A±t−α(1 + B±tω) + C + D t ,

where A+, B±, C, D are free parameters, which again all may depend on Euclidean time. This
provides very good fits in the interval T/Tc ∈ [0.94, 1.05].
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Correlation functions

Critical behavior of GΘΘ

The analysis presented establishes that the correlation function of the trace of the
energy-momentum tensor shows the expected universal singular structure of the specific heat in
a 3-dimensional Ising model. In the vicinity of Tc the singular contributions to GΘΘ(τ,T ) are
found to be independent of Euclidean time.
In order to eliminate the leading singular behavior from GΘΘ it thus suffices to consider
∆GΘΘ(τ,T ) ≡ GΘΘ(τ,T )− GΘΘ(1/2T ,T ).
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In order to eliminate the leading singular behavior from GΘΘ it thus suffices to consider
∆GΘΘ(τ,T ) ≡ GΘΘ(τ,T )− GΘΘ(1/2T ,T ).

We have therefore explicitly shown that the singular term in GΘΘ gives a contribution to its
spectral function which is proportional to a delta function at zero frequency.

ρΘΘ(ω,T ) = 9ρpp(ω,T ) + T∂T (ε− 6p)ωδ(ω) .
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Correlation functions

Correlation functions of Gεε,Gεp,Gpp
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Correlation functions

Considerations for the bulk viscosity

The pressure-pressure correlation function Gpp does not present any singular behavior. From
this observation we cannot conclude however that the bulk viscosity itself is not diverging.
In fact consider a simple ansatz for the form of the spectral function ρpp :

ρpp(ω,T ) ≡ f (ω, ζ, ω0) + ρ>(ω,T ) ,

where the low-frequency part is modeled by a Breit-Wigner:

f (ω, ζ, ω0) =
1
π
ζ

ωω2
0

ω2 + ω2
0

,

with ζ and ω0 both dependent on T . If approaching Tc , ω0 → 0 we have:

Gpp(τ,T ) ∝ Tζ(T )ω0(T ) +O(ω2
0) + high frequency part .

We have therefore that the product ζ(T )ω0(T ) remains finite at the critical temperature, while the
bulk viscosity itself may or may not diverge.
The parameter ω0 represent the characteristic frequency range over which ρ/ω remains constant
and equal to ζ. Assuming that ω0 is related to the inverse relaxation time we have: ω0(t) ∝ tzν ,
where z is a dynamical critical exponent z ∼ 2− 3.
This in turn implies that it is still possible that the bulk viscosity is rather strongly divergent at Tc
while no visible singularity is visible in the pressure-pressure correlator.
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Conclusions

Conclusions

1 As a preliminary step, we have studied the thermodynamic properties of the SU(2) LGT at
the deconfinement transition. Specifically the critical behavior of the pressure, energy
density was analyzed and found in excellent agreement with the expected 3-d Ising critical
behavior.

2 We have shown that the correlation function of the trace of the energy-momentum tensor
GΘΘ diverges at the critical temperature.

3 Using the finite size scaling at the critical temperature and the temperature scaling in the
critical region, the singular structure of GΘΘ was found to be consistent, with high
accuracy, with that of the specific heat cV .

4 We have shown that GΘΘ becomes independent of Euclidean time at the critical point,
which indicates that its spectral representation has a δ-function singularity at zero
frequency.

5 The correlators Gεε, Gεp and Gpp were also analyzed. The singular behavior of GΘΘ can
be traced back in the corresponding singular behavior of Gεε, while the other two
correlation functions remain finite at the critical point.

Thank You!
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Conclusions

Critical energy density and pressure
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Conclusions

Definition of local operators

The differential formalism provides a straightforward way to introduce local lattice operators for
the energy density and pressure.
For example:

Θµµ(~x , x4)

T 4
= 6NN4

τB(g−2)
`
Pσ(~x , x4) + Pτ (~x , x4)− 2P0

´

This is the simplest choice of a local expression for ε, p, Θµµ and s and we will denote it in the
following as discretization scheme 1.

We have also considered 2 other possibilities, denoted in the following as discretization scheme
2 and 3. They are defined by the following substitutions:

scheme 2: Pσ(x) →
1
2

[Pσ(x) + Pσ(x + ê4)]

scheme 3: Pτ (x) →
1
2

[Pτ (x) + Pτ (x − ê4)]

All of the above schemes have O(a2) discretization errors. Comparing different discretization
schemes will allow to estimate these systematic effects.
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Conclusions

Zero momentum correlation functions

In the following we will always consider zero-momentum correlation functions. We introduce
zero-momentum projected operators and their fluctuations:

Y (τ) =
1

N3
σ

X
~x

Y (~x , τ) ,

Ȳ (τ) = Y (τ)− 〈Y (τ)〉 .

Connected correlation functions are then obtained as thermal averages of products of fluctuation
operator:

GXY (τ,T )

T 5
= N5

τ 〈X̄(τ)Ȳ (0)〉 .

It will also be useful to consider the following difference of correlators:

∆GXY (τ,T )

T 5
= N5

τ

»
〈X(τ)Y (0)〉 − 〈X(

1
2T

)Y (0)〉
–
.

Note that the constant P0 entering in the expression of ε, p and Θµµ can be neglected in the
correlation functions GXY and ∆GXY .
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Conclusions

Correlation functions of Gεε,Gεp,Gpp

Since
GΘΘ(τ,T ) = Gεε(τ,T )− 6Gεp(τ,T ) + 9Gpp(τ,T ) ,

we have:

∆GΘΘ(τ,T ) = ∆Gεε(τ,T )− 6∆Gεp(τ,T ) + 9∆Gpp(τ,T ) ' 9∆Gpp(τ,T ) .

The last equality is expected in the continuum limit since the correlation functions involving the
energy density operator ∆GεY vanish.

This relation would allow in principle to use the correlation function ∆GΘΘ – which seems to be
much easier to determine numerically – instead of Gpp for the determination of the bulk viscosity,
without having to worry about the delta function singularity in the spectral function of GΘΘ.

However the independence on the time separation τ of Gεε and Gεp is required. At finite lattice
spacing violations of order O(a2) are expected.

We found in fact that for our Nτ = 4 lattices such cut-off effects are large.
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without having to worry about the delta function singularity in the spectral function of GΘΘ.

However the independence on the time separation τ of Gεε and Gεp is required. At finite lattice
spacing violations of order O(a2) are expected.

We found in fact that for our Nτ = 4 lattices such cut-off effects are large.
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Discretization errors
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Conclusions

Discretization errors

It is clearly seen that for Nτ = 4 lattices the correlation function Gεε and Gεp are not constant.

We can look at the magnitude of discretization effects in the correlators comparing different
discretization schemes. Cut-off effects seems to be quite big for the correlation functions
considered.
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Conclusions

Discretization errors – larger Nτ

To better understand the magnitude of cut-off effects in the correlation functions, we performed
some new simulations at larger Nτ = 6, 8, Nσ/Nτ = 12.
From the comparison at different Nτ of the three different discretization schemes, they seem to
approach each other, even if the convergence is slow.
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Conclusions

Discretization errors – larger Nτ

To better understand the magnitude of cut-off effects in the correlation functions, we performed
some new simulations at larger Nτ = 6, 8, Nσ/Nτ = 12.
From the comparison at different Nτ of the three different discretization schemes, they seem to
approach each other, even if the convergence is slow.

A better control of cut-off effects is highly desirable to make contact with the continuum
correlation functions.
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Conclusions

Discretization errors – critical behavior

On coarse lattices one may be worried about cut-off effects. Fortunately, these are not crucial for
the analysis of critical behavior reflected by these correlation functions in the vicinity of the
deconfinement transition.
As the correlation length is large close to Tc thermal effects are not very sensitive to the
underlying cut-off. The cut-off dependence, being a short distance or large momentum effect, is
part of the smooth regular background that contributes to GXY (τ,T ).

0.95 0.975 1 1.025 1.05

T/T
c

15

20

25

30

35

G
Θ

Θ
/Τ

5

scheme 1
scheme 2
scheme 3

C. Pica (BNL) LATTICE 2008 - 7/17/2008 31 / 31



Conclusions

Discretization errors – critical behavior

On coarse lattices one may be worried about cut-off effects. Fortunately, these are not crucial for
the analysis of critical behavior reflected by these correlation functions in the vicinity of the
deconfinement transition.
As the correlation length is large close to Tc thermal effects are not very sensitive to the
underlying cut-off. The cut-off dependence, being a short distance or large momentum effect, is
part of the smooth regular background that contributes to GXY (τ,T ).

0.95 0.975 1 1.025 1.05

T/T
c

-40

-20

0

20

G
εε

/Τ
5

scheme 1
scheme 2
scheme 3

C. Pica (BNL) LATTICE 2008 - 7/17/2008 31 / 31


	Introduction
	SU(2) thermodynamics
	Correlation functions
	Conclusions

