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Overview

CONTENTS:
1. Introduction
2. New descriptions of the Yang-Mills theory & non-Abelian Stoks’  theorem
3. Numerical simulation for new variables
4. The gauge invariant monopole
5. Numerical results
6. Conclusion and discussion

The purpose of this talk is to give a new description of the 
Yang-Mills theory on a lattice, which enable one to explain  
quark confinement based on the dual superconductivity.
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Dual superconductor picture from lattice studies

Quark confinement follows from the area law of the Wilson loop average 
[Wilson,1974]

Numerical simulations support this picture:
– Abelian dominance    

• [Suzuki & Yotsuyanagi, PRD42,4257,1990]
– (Abelian) Monopole dominance 

• [Stack, Neiman and Wensley, hep-lat/9404014],[Shiba & Suzuki, hep-
lat/9404015]

SU(2) case
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Problems
How can we establish the gauge-invariant “Abelian” dominance 
and magnetic monopole dominances?
These result are obtained
– Only for gauge fixings  by the maximal Abelian (MA) gauge  and the 

Laplacian Abelian gauge ,
– however,  these gauge fixing breaks color symmetry.

For the SU(3) case, is there any possibility other than projecting 
to the maximal torus group?

Possible sub groups for SU(3):

Ux,  Xx,Vx, ∈ G  SU3
Vx,  diagexpi, expi, expi ∈ U1  U1       0 mod 2

 

 

minimal case U2 ≅ SU2  U1 ∈ SU3
maximal case U1  U1 ∈ SU3
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A new description of lattice Yang-Mills theory
Question:
• Can we obtain a gauge independent 

decomposition of the link variable U=XV, 
which reproduces the  “Abelian” dominance 
for Wilson loop?
• V corresponds to the conventional “Abelian” 

part.
• V and X transform  under the SU(N) gauge  

transformation
Yes, for the SU(2) YM theory.

• Compact representation of Cho-Faddeev-
Niemi-Shabanov (CFNS) decomposition on 
lattice.  PLB632 326(2006), PLB645 67(2007), 
PLB653 101(2007)

Obtaining the decomposition of  a link 
variable  for the fundamental rep. of 
Wilson loop  in SU(3) YM.

WCU : Tr P 
〈x,x∈C

Ux, /Tr1

WCV : Tr P 
〈x,x∈C

Vx, /Tr1

Ux,  Xx,Vx,

WCU  const.WCV !!

Ux, → Ux,
′  xUx,x

†

Vx, → Vx,
′  xVx,x

†

Xx, → Xx,
′  xXx,x

†
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YM YM’equipollent

Ux, Vx,,Xx,Ux,  Xx,Vx,

A new description of the SU(3) YM theory
for Wilson loop of  the fundamental rep.

Extending  our SU(2) formulation 
To obtain the equipollent theory by new 
variables V and X ,
Extend the local gauge symmetry by  
introducing the color field h(x)
Fundamental rep. of Wilson loop
= Minimal case 

Defining the M-YM (master Yang-Mills)

Ux, → Ux,
′  xUx,x

†

Vx, → Vx,
′  xVx,x

†

Xx, → Xx,
′  xXx,x

†

hx → hx
′  ΘxhxΘx

†

hx ∈ SU3/U2

See arXiv:0803.2451v1 [hep-lat]lattice 2008 July 18th, 2008



M-YM

YM YM’equipollent

Ux, Vx,,Xx,Enlarge Reduction

Ux, hx

Symmetry of M-YM and new variables 

• Extending the SU(2) case
• Defining equation from 

fundamental rep. of Wilson loop 

Vx,hx  hxVx,

TrXx, − Xx,
† hx,  0

A necessary and sufficient condition for 

which is derived from non-Abelian Stokes’ theorem (NAST)  on a lattice. 

WCU  const.WCV !!
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Adopting  an  ansatz for V ;

Solving the defining equations
arXiv:0803.2451[hep-lat]

Vx,hx  hxVx,

TrXx, − Xx,
† hx,  0

Then we obtain parameters
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Reduction condition
Imposing a constraint called the reduction condition to reduce enlarged  
symmetry SU(3)×[SU(3)/U(2)] to SU(3)
Equipollent theory to YM 

• To obtain the gauge independent decomposition
the functional  Frc should be  invariant under the SU(3) gauge transformation

Reduction condition is given by minimizing the functional:

Frcx ,Θx ; hx , Ux,  ∑
x,

Tr D
 Ux,Θhx D

 Ux,Θhx 
†
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Numerical Simulation for new variables
YM filed U can be generated by  the STANDARD method.
Color field h can be determined by the reduction condition by using the gauge 
fixing technique:
– Gauge invariance of reduction condition

The color field is given by the solution of FRC

New variables are given  by decomposing an arbitrary link variable  U , by 
using the solution of defining equation for a given color field h from FRC

GU  solU  Θx
†LLGUΘx

††

hx  Θx
†h0Θx

††
 

 

Ux,, hx → Ṽx, → Vx, → Vx, → Xx,  Ux,Vx,
†

gauge 
independent
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Frcx ,Θx ; hx, Ux,

→ ∑
x,

TrUx,ΘhxUx,
† Θhx  ∑

x,

TrGUx,h0 GUx,
† h0

h0  Θx
†hxΘx  8

GUx,  Θx
†Ux,Θx



A new description of the YM theory
for SU(3) minimal case

M-YM

YM YM’

YM+LLG YM’+LLG

equipollent

Ux, Vx,,Xx,

Global 
SU(3)

Global 
SU(3)

Enlarge Reduction

gauge fixinggauge fixing

Ux, hx

equipollent
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Defining gauge invariant non-Abelian monopole

The gauge invariant field strength for V  

The magnetic monopole current can by define by F[V] 
Vx,Vx,Vx,

† V† x, ≃ exp−igFV

Naïve conti.lim.

(Second homotopy group)

Gauge invariant 
under G=SU(3)
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NAST for Wilson operator & magnetic monopole
» (e.g. K.-I. Kondo  PRD77 085929(2008))

Wilson loop for the fundamental representation

lattice
version

〈WCU ≈ 〈WCMag  exp 2i∑
s,

kx,x,

x, : ∑
s

ΔL
−1s − s′ 1

2 ∂S
J s′  , ∂′ SJ s  Js
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Numerical simulation
Parameters:

Wilson action
– Configurations are generated by using  pseudo head bath algorithm 

(Cabibbo-Marinari)  for the Wilson action 

Lattics size , 164,   beta=5.7

Gauge fixing technique to calculate the reduction condition 
Study in the case of the lattice Landau gauge for original YM 
theory( Propagators /correlations) 
– For gauge fixing of YM theory over-relaxation algorithm is used. 
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Color symmetry 
(correlation of color vector fields)

The Landau gauge preserve 
global SU(3) symmetry, color 
symmetry, of YM theory.
The color fields h mast have 
color symmetry.

To check this, VEV and 
correlation functions of color 
vector fields are calculated.

Color  symmetry is 
preserved. 
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Magnetic monopole and charge quantization

•164 lattice  β=5.7 
#config. = 400 

•Quantized magnetic 
monopole charge density

k4

%
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Monopole charge quantization and distributions 

k4

k2k1

k3
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Infrared V dominance 

the correlation function 
for the original gauge field, 
A in the Landau gauge  and 
new variables, V, X.

Damping of  <VV>  is the 
almost same as that of 
<AA>

Damping of  <XX>  is 
quickly and decoupled 
from V in IR region. DAAx − y ≃ DVVx − y  DXXx − y,

|x − y |  1

infrared  V dominance 
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Mass Gap ?  

lo
g 

r3/
2 D

O
O
r
 

Condensation of mass dimension 
two is possible?
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Conclusion
We have proposed  a new description of the YM theory on a lattice and 
demonstrated the numerical simulation for SU(3) minimal case:
– Gauge independent decomposition of link variable U=XV for the 

fundamental representation of  Wilson loop.
– V approve the conventional “Abelian” part
– Gauge invariant non-Abelian magnetic monopole current is defined by V
– Infrared “Abelian dominance”

• Outlook
V dominance / monopole dominance for the Wilson loop (in progress)
N-ality for the string tension
Relations between  topological defects?
– Center vortex or monopole loops    arXiv:0802.3829 [hep-th] 
– Magnetic Monopole Loops supported by  meron pair? arXiv:0806.3913 [hep-th]
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THANK YOU FOR YOUR 
ATTENSION
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