Extended schematic model for hadrons and what happens to the radius of an excited hadron

> Tamar Friedmann University of Rochester

Workshop on Excited Hadronic States and the Deconfinement Transition Jefferson Lab - Feb. 25, 2011

- classification of hadrons: traditional quark model
 - mesons: $q\bar{q}$
 - baryons: qqq
- not everything fits \implies "exotic mesons"
 - light scalar nonet
 - some charmed mesons
- use diquarks \mathcal{Q} as building blocks
- but diquarks were never used systematically as a classification tool for all known mesons...

<u>Idea</u>: construct a schematic model with quarks and diquarks as building blocks to reclassify mesons, and see what we might learn about QCD in the process.

arXiv:0910.2229 I: Diquarks and Classification of Mesons Which diquarks?

- interquark forces not known at low energies
- derive diquark building blocks from meson phenomenology:

 $Q\bar{Q} =$ flavor nonets $\implies Q$ is flavor-antisymmetric

Table: Diquark configurations

	Fla	lvor	Spin	Color	\mathcal{H}_{CM}	\mathcal{H}_{CE}
	$SU(3)_f$	$SU(4)_f$	$SU(2)_s$	$SU(3)_c$		
\mathcal{Q}_1	$ar{3}_f(A)$	$ar{6}_f(A)$	$1_{s}(A)$	$ar{3}_c(A)$	-8	-8/3
\mathcal{Q}_2	$ar{3}_f(A)$	$ar{6}_f(A)$	$3_{s}(S)$	$6_{c}(S)$	-4/3	4/3
\mathcal{Q}_3	$6_f(S)$	$10_{f}(S)$	$3_{s}(S)$	$ar{3}_c(A)$	8/3	-8/3
\mathcal{Q}_4	$6_f(S)$	$10_f(S)$	$1_{s}(A)$	$6_{c}(S)$	4	4/3

Meson quantum numbers

• Color

$$q\bar{q} : \mathbf{3}_{c} \otimes \bar{\mathbf{3}}_{c} = \mathbf{8}_{c} \oplus \mathbf{1}_{c} \qquad SU(3)_{c},$$

$$\mathcal{Q}_{1}\bar{\mathcal{Q}}_{1} : \bar{\mathbf{3}}_{c} \otimes \mathbf{3}_{c} = \mathbf{8}_{c} \oplus \mathbf{1}_{c} \qquad SU(3)_{c},$$

$$\mathcal{Q}_{2}\bar{\mathcal{Q}}_{2} : \mathbf{6}_{c} \otimes \bar{\mathbf{6}}_{c} = \mathbf{27}_{c} \oplus \mathbf{8}_{c} \oplus \mathbf{1}_{c} \qquad SU(3)_{c},$$

• Flavor

$$q\bar{q} : \mathbf{3}_{f} \otimes \bar{\mathbf{3}}_{f} = \mathbf{8}_{f} \oplus \mathbf{1}_{f} \qquad SU(3)_{f},$$
$$\mathcal{Q}_{i}\bar{\mathcal{Q}}_{i} : \bar{\mathbf{3}}_{f} \otimes \mathbf{3}_{f} = \mathbf{8}_{f} \oplus \mathbf{1}_{f} \qquad SU(3)_{f},$$

• J^{PC}

$$J = L \otimes S \; .$$

$$q\bar{q}$$
: $P = (-1)^{L+1}$, $C = (-1)^{L+S}$
 $Q_i \bar{Q}_i$: $P = (-1)^L$, $C = (-1)^{L+S}$.

	7	Fable	2a: $q\bar{q}$	
L	S	J^{PC}	$^{2S+1}L_J$	
0	0	0^{-+}	$^{1}S_{0}$	$\sqrt{\bullet}$
0	1	1	${}^{3}S_{1}$	$\sqrt{\bullet}$
1	0	1^{+-}	$^{1}P_{1}$	$\sqrt{\bullet}$
1	1	2^{++}	${}^{3}P_{2}$	$\sqrt{\bullet}$
		1^{++}	${}^{3}P_{1}$	$\sqrt{\bullet}$
		0^{++}	${}^{3}P_{0}$	$\sqrt{\bullet}$
2	0	2^{-+}	$^{1}D_{2}$	$\sqrt{\bullet}$
2	1	3	${}^{3}D_{3}$	$\sqrt{\bullet}$
		$2^{}$	${}^{3}D_{2}$	
		1	${}^{3}D_{1}$	$\sqrt{\bullet}$
3	0	3+-	${}^{1}F_{3}$	
3	1	4^{++}	$3F_4$	$\sqrt{\bullet}$
		3^{++}	${}^{3}F_{3}$	
		2^{++}	${}^{3}F_{2}$	$\sqrt{\bullet}$

Table 2b: $Q_1 \overline{Q}_1$									
L	S	J^{PC}	$^{2S+1}L_J$						
0	0	0^{++}	${}^{1}S_{0}$	$\sqrt{\bullet}$					
1	0	1	${}^{1}P_{1}$	$\sqrt{\bullet}$					
2	0	2^{++}	${}^{1}D_{2}$						
3	0	3	${}^{1}F_{3}$						

$\textbf{Table 2c: } \mathcal{Q}_2\bar{\mathcal{Q}}_2$									
L	S	J^{PC}	$^{2S+1}L_J$						
0	0	0^{++}	${}^{1}S_{0}$						
0	1	1^{+-}	${}^{3}S_{1}$						
0	2	2^{++}	${}^{5}S_{2}$						
1	0	1	$^{1}P_{1}$						
1	1	2^{-+}	${}^{3}P_{2}$	$\sqrt{\bullet}$					
		1^{-+}	${}^{3}P_{1}$	\checkmark					
		0^{-+}	${}^{3}P_{0}$	$\sqrt{\bullet}$					
1	2	3	${}^{5}P_{3}$						
		$2^{}$	${}^{5}P_{2}$	$\sqrt{\bullet}$					
		1	${}^{5}P_{1}$						
2	0	2^{++}	$^{1}D_{2}$	\checkmark					
2	1	3^{+-}	${}^{3}D_{3}$						
		2^{+-}	$^{3}D_{2}$						
		1^{+-}	${}^{3}D_{1}$						
2	2	4^{++}	${}^{5}D_{4}$						
		3^{++}	${}^{5}D_{3}$						
		2^{++}	${}^{5}D_{2}$						
		1^{++}	${}^{5}D_{1}$						
		0^{++}	${}^{5}D_{0}$						

	Tal	ble 20	c, cont'o	ł
L	S	J^{PC}	$^{2S+1}L_J$	
3	0	3	${}^{1}F_{3}$	
3	1	4^{-+}	${}^{3}F_{4}$	\checkmark
		3^{-+}	${}^{3}F_{3}$	
		2^{-+}	${}^{3}F_{2}$	
3	2	5	${}^{5}F_{5}$	
		$4^{}$	${}^{5}F_{4}$	
		3	${}^{5}F_{3}$	
		$2^{}$	${}^{5}F_{2}$	
		1	${}^{5}F_{1}$	

								_		_			
Tables 2a,	, 2b,	2c :	Meson	quantum	numbers	for	$q\bar{q}$,	$\mathcal{Q}_1\mathcal{Q}_1,$	and	$\mathcal{Q}_2\mathcal{Q}_2$	up	to L	=3.

Classification of mesons:

- arrange mesons from PDG into flavor multiplets
- to each multiplet assign
 - meson type: $q\bar{q}$, $Q_1\bar{Q}_1$, or $Q_2\bar{Q}_2$
 - -L and S numbers

J^{PC}	constituents	$^{2S+1}L_J$	I = 1	$I = \frac{1}{2}$	I = 0		$n^{2S+1}L_J(PDG)$
0-+	q ar q	$^{1}S_{0}$	$\bullet\pi$	$\bullet K$	• η	• $\eta'(958)$	$1^{1}S_{0}$
0-+	${\cal Q}_2 ar{{\cal Q}}_2$	$^{3}P_{0}$	• $\pi(1300)$	K(1460)	• $\eta(1475)$	• $\eta(1295)$	$2^{1}S_{0}$
0++	${\cal Q}_1 ar{{\cal Q}}_1$	$^{1}S_{0}$	$\bullet a_0(980)$	$\kappa(800)$	• $f_0(980)$	• $f_0(600)$	
0++	q ar q	$^{3}P_{0}$	$\bullet a_0(1450)$	• $K_0^*(1430)$	• $f_0(1710)$	• $f_0(1370)$	$1^{3}P_{0}$
0^{++}	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}D_{0}$		$K_0^*(1950)$	$f_0(2100)$	• $f_0(2020)$	
1	q ar q	$^{3}S_{1}$	$\bullet ho(770)$	• $K^{*}(892)$	• $\phi(1020)$	• $\omega(782)$	$1^{3}S_{1}$
1	${\cal Q}_1 ar{{\cal Q}}_1$	$^{1}P_{1}$	$\bullet\rho(1450)$	• $K^*(1410)$	• $\phi(1680)$	• $\omega(1420)$	$2^{3}S_{1}$
1	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}P_{1}$	$ \rho(1570) $				
1	q ar q	$^{3}D_{1}$	$\bullet ho(1700)$	• $K^{*}(1680)$	• $\omega(1650)$		$1^{3}D_{1}$
1	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}F_{1}$	$ \rho(2150) $				
1-+	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	$^{3}P_{1}$	• $\pi_1(1600)$	K(1630)			
1++	q ar q	$^{3}P_{1}$	$\bullet a_1(1260)$	• $K_1(1400)$	• $f_1(1420)$	• $f_1(1285)$	$1^{3}P_{1}$
1++	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}D_{1}$	$a_1(1640)$	$K_1(1650)$	$f_1(1510)$		
1+-	q ar q	$^{1}P_{1}$	$\bullet b_1(1235)$	• $K_1(1270)$	$h_1(1380)$	• $h_1(1170)$	$1^1 P_1$
1+-	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	$^{3}D_{1}$			$h_1(1595)$		
2^{-+}	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	$^{3}P_{2}$	• $\pi_2(1670)$	$K_2(1580)$	$\eta_2(1870)$	• $\eta_2(1645)$	1^1D_2
2^{-+}	q ar q	$^{1}D_{2}$	• $\pi_2(1880)$				
2^{-+}	${\cal Q}_2 ar{{\cal Q}}_2$	${}^{3}F_{2}$	$\pi_2(2100)$	$K_2(2\overline{250})$			
2	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}P_{2}$		• $K_2(1770)$			
2	q ar q	$^{3}D_{2}$		• $K_2(1820)$			$1^{3}D_{2}$

Table 3a: Our suggested assignments for observed light mesons.Compare with Table14.2 in the PDG.

J^{PC}	constituents	$^{2S+1}L_J$	I = 1	$I = \frac{1}{2}$	I = 0		$n^{2S+1}L_J(PDG)$
2^{++}	q ar q	${}^{3}P_{2}$	$\bullet a_2(1320)$	$\bullet K_2^*(1430)$	$f_2(1430)$	• $f_2(1270)$	$1^{3}P_{2}$
2^{++}	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{1}D_{2}$			• $f'_2(1525)$		
2^{++}	${\cal Q}_1 ar{{\cal Q}}_1$	${}^{1}D_{2}$	$a_2(1700)$		$f_2(1640)$	$f_2(1565)$	
2^{++}	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}D_{2}$			$f_2(1810)$		
2^{++}	q ar q	${}^{3}F_{2}$		$K_2^*(1980)$	• $f_2(2010)$	• $f_2(1950)$	*
3	$q \bar{q}$	${}^{3}D_{3}$	• $\rho_3(1690)$	• $K_3(1780)$	• $\phi_3(1850)$	• $\omega_3(1670)$	$1^{3}D_{3}$
3	${\cal Q}_1 ar{{\cal Q}}_1$	${}^{1}F_{3}$	$ \rho_3(1990) $				
3	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{1}F_{3}$	$ \rho_3(2250) $				
3+-	q ar q	${}^{1}F_{3}$		$K_3(2320)$			
4-+	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{3}F_{4}$		$K_4(2500)$			
4++	q ar q	${}^{3}F_{4}$	$\bullet a_4(2040)$	• $K_4^*(2045)$	$f_4(2220)$	• $f_4(2050)$	$1^{3}F_{4}$
5	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}F_{5}$	$ \rho_5(2350) $	$K_5^*(2380)$			$1^{3}G_{5}$
6++	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}G_{6}$	$a_6(2450)$		$f_6(2510)$		$1^{3}H_{6}$

* This nonet was classified as $2^{3}P_{2}$, a radial excitation, between 1992 and 2002.

			Char	med mesons			Bottom mesons			$n^{2S+1}L_J$
J^{PC}	constituents	$ ^{2S+1}L_J $	$I = 1^{\circ} I = \frac{1}{2}$	I = 0	I = 0	$I = 1^{\circ}$	$I = \frac{1}{2}$	I = 0	I = 0	(PDG)
0-+	$q\bar{q}$	$^{1}S_{0}$	• <i>D</i>	$\bullet D_s^\sharp$	• $\eta_c(1S)$		$\bullet B^{\dagger}$	$\bullet B_s^\dagger, B_c^\dagger$	$\eta_b(1S)^\dagger$	$1^{3}S_{0}$
0-+	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	$^{3}P_{0}$			$\bullet \eta_c(2S)^\dagger$					$2^{1}S_{0}$
0++	${\cal Q}_1 ar{{\cal Q}}_1$	$^{1}S_{0}$	$D_0^*(2400)^{\sharp}$	• $D_{s0}^{*}(2317)$	• $\chi_{c0}(1P)$				• $\chi_{b0}(1P)$	$1^{3}P_{0}$
0++	$q\bar{q}$	$^{3}P_{0}$							$\chi_{b0}(2P)^{\dagger\dagger}$	$2^{3}P_{0}$
1	$q\bar{q}$	$^{3}S_{1}$	•D*	$\bullet D_s^{*\sharp}$	• $J/\psi(1S)$		$\bullet B^{*\dagger}$	$B_s^{*\dagger}$	• $\Upsilon(1S)$	$1^{3}S_{1}$
1	$\mathcal{Q}_1 ar{\mathcal{Q}}_1$	$^{1}P_{1}$			$\bullet\psi(2S)$				• $\Upsilon(2S)$	$2^{3}S_{1}$
1	$q\bar{q}$	$^{3}D_{1}$			$\bullet\psi(3770)$				$\bullet \Upsilon(3S)$	*
1	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	${}^{5}F_{1}$			$\bullet\psi(4040)$				$\bullet \Upsilon(4S)$	*
1++	$q\bar{q}$	$^{3}P_{1}$	$D_1(2420)$	$\bullet D_{s1}(2536)^{\sharp}$	• $\chi_{c1}(1P)$		• $B_1(5721)^{0\dagger}$	• $B_{s1}(5830)^{0\dagger}$	• $\chi_{b1}(1P)^{\dagger\dagger}$	**
1++	$\mathcal{Q}_2 ar{\mathcal{Q}}_2$	$^{5}D_{1}$		• $D_{s1}(2460)$	$\bullet X(3872)^{\sharp\sharp}$				• $\chi_{b1}(2P)^{\dagger\dagger}$	**
2++	$q\bar{q}$	$^{3}P_{2}$	• $D_2^*(2460)$	$\bullet D_{s2}(2573)^{\sharp}$	• $\chi_{c2}(1P)$		• $B_2^*(5747)^{0\dagger}$	• $B_{s2}^{*}(5840)^{\dagger}$	• $\chi_{b2}(1P)^{\dagger\dagger}$	$1^3 P_2^{**}$
2++	$\mathcal{Q}_1 ar{\mathcal{Q}}_1$	$^{1}D_{2}$			$\chi_{c2}(2P)$				• $\chi_{b2}(2P)^{\dagger\dagger}$	$2^{3}P_{2}$

Table 3b: Our suggested assignments for observed heavy (charm and bottom) mesons. Compare with Table 14.3 in the PDG.

Table 3c: Isorons and magic J^{PC} .

Isorons										
	0-+	0++	1	1-+	2^{++}	4++				
	$\bullet\eta(1405)$	• $f_0(1500)$	$ \rho(1900) $	• $\pi_1(1400)$	$f_2(1910)$	$f_4(2300)$				
	$\eta(1760)$	$f_0(2200)$			$f_2(2150)$					
Light	$\bullet\pi(1800)$	$f_0(2330)$			• $f_2(2300)$					
	K(1830)				• $f_2(2340)$					
	$\eta(2225)$									
			$\bullet\psi(4160)$							
			• $X(4260)$							
Heavy			X(4360)							
			$\bullet\psi(4415)$							
			$\Upsilon(10860)$							
			$\Upsilon(11020)$							

Glueballs									
		0^{-+}	0++	1	1-+	2++	4++		
		X	X			X			

• isorons

- magic numbers and glueballs
- no "exotics"

former exotic mesons:

- the "cryptoexotic" light scalar nonet with $J^{PC} = 0^{++}$ is a $Q_1 \bar{Q}_1$, 1S_0
- a manifestly "exotic" meson with $J^{PC} = 1^{-+}$ is a $\mathcal{Q}_2 \bar{\mathcal{Q}}_2, \, {}^3P_1$
- some newly discovered charmed mesons including: * the $D_{sJ}^*(2317)$ with $J^{PC} = 0^{++}$ is a $Q_1\bar{Q}_1$, 1S_0 ; * the $D_{sJ}(2460)$ with $J^{PC} = 1^{++}$ is a $Q_2\bar{Q}_2$, 5D_1 ; * the X(3872) with $J^{PC} = 1^{++}$ is a $Q_2\bar{Q}_2$, 5D_1 .

former outcasts:

- some heavier scalar mesons with $J^{PC} = 0^{++}$ now form a nonet which is classified as $Q_2 \bar{Q}_2$, 5D_0 ;
- some vector mesons with $J^{PC} = 1^{++}$ are now $\mathcal{Q}_2 \bar{\mathcal{Q}}_2$, 5D_1 ;
- -some 2^{++} mesons which are now $\mathcal{Q}_1 \bar{\mathcal{Q}}_1$, 1D_2 .

• no radials

- the second 0^{-+} nonet, previously a radial excitation with $n^{2S+1}L_J = 2^1S_0$, is a $\mathcal{Q}_2\bar{\mathcal{Q}}_2$ with ${}^{2S+1}L_J = {}^3P_0$; - the second 1^{--} nonet, previously a radial excitation with $n^{2S+1}L_J = 2^3S_1$, is a $\mathcal{Q}_1\bar{\mathcal{Q}}_1$ with ${}^{2S+1}L_J = {}^1P_1$. Baryon sector: which diquarks for baryons?

color singlets \implies color antisymmetric

Table: Diquark configurations

	Fla	vor	Spin	Color	\mathcal{H}_{CM}	\mathcal{H}_{CE}
	$SU(3)_f$	$SU(4)_f$	$SU(2)_s$	$SU(3)_c$		
\mathcal{Q}_1	$\bar{3}_f(A)$	$ar{6}_f(A)$	$1_{s}(A)$	$ar{3}_c(A)$	-8	-8/3
$ \mathcal{Q}_2 $	$\bar{3}_f(A)$	$ar{6}_f(A)$	$3_{s}(S)$	$6_{c}(S)$	-4/3	4/3
\mathcal{Q}_3	$6_f(S)$	$10_{f}(S)$	$3_{s}(S)$	$ar{3}_c(A)$	8/3	-8/3
$ \mathcal{Q}_4 $	$6_f(S)$	$10_{f}(S)$	$1_{s}(A)$	$6_{c}(S)$	4	4/3

– Ropers

 $1/2^+$: N(1440), $\Lambda(1600)$, $\Sigma(1660)$; $1/2^+$: N(1710), $\Lambda(1810)$, $\Sigma(1880)$; $3/2^+$: $\Delta(1600)$.

Ropers as pentaquarks, $Q_1 Q_1 \bar{q}$ P-waves

 \implies There are no radial excitations in the hadron spectrum

The title of the paper was:

No Radial Excitations in Low-Energy QCD I: Diquarks and Classification of Mesons (arXiv: 0910.2229)]

- PDG 1960's: $2S+1L_J$
- PDG 1980's: $n^{2S+1}L_J$
- PDG 2004
- experiment

• The radius of a hadron is largest when the hadron is in its ground state.

Table: Measured sizes of ground state (L = 0) hadrons

Mesons						
	Mass (MeV)	Radius (fm)	Density (g/cm^3)	Source		
π^{\pm}	140	.672	$.20 \times 10^{15}$	PDG		
K^{\pm}	494	.560	1.2×10^{15}	PDG		

Baryons						
	Mass (MeV)	Radius (fm)	Density (g/cm^3)	Source		
p	938	.87	$.61 \times 10^{15}$	PDG		
Σ^{-}	1197	.78	1.1×10^{15}	PDG		
Δ	1382	.650	2.1×10^{15}	Lattice		
	1425	.632	2.4×10^{15}	Lattice		
	1470	.614	2.7×10^{15}	Lattice		

• The radius of a hadron is largest when the hadron is in its ground state.

• The radius of a hadron decreases when the hadron's orbital excitation increases.

• The radius of a hadron is largest when the hadron is in its ground state.

• The radius of a hadron decreases when the hadron's orbital excitation increases.

Opposite of atoms:

The radius of an atom is smallest in the ground state The radius of an atom increases with L • Corollary: the path from confinement to asymptotic freedom is a Regge trajectory simple testable prediction about a fundamental property of hadrons: their size

– Request to lattice QCD people: please compute more radii!

- Request to experimentalists: please measure more radii!

The title was: No Radial Excitations in Low-Energy QCD II: The Shrinking Radius of Hadrons (arXiv: 0910.2231) The title was: No Radial Excitations in Low-Energy QCD II: The Shrinking Radius of Hadrons (arXiv: 0910.2231)

Cover of Nature 9 months later (July 2010): "Shrinking the proton" The title was: No Radial Excitations in Low-Energy QCD II: The Shrinking Radius of Hadrons (arXiv: 0910.2231)

Cover of Nature 9 months later (July 2010): "Shrinking the proton"

Physics Today on size of protons (August 2010): "... the proton is a quark composite whose size and shape are quantum-chromodynamic manifestations beyond the purview of QED." Summary:

Diquarks and quarks as building blocks

 \implies reclassification of hadron spectrum

 \implies no radial quantum number

 \implies shrinking radius of hadrons